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So, you can tell me how to hack
credit cards!
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Cryptography is the science of
keeping information secure. As a
result, it’s designed to make it

"extremely hard" for an
unauthorized party (like a
hacker) to get access to the
protected data.
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SYMMETRIC KEY ENCRYPTION

It’s no use Zk’j ef ljv xfzex It's no use
going back to srtb kf going back to
yesterday, pvjkviurp, yesterday,
because Iwas | ENCRYPTION svriy Znijr | DECRYPTION because | was
a different uzwwvivek a different
person then gvijfe kyve person then

KEYEXCHANGE PROBLEM
SHARED KEY

10[1/1]--[0]0]|1][0] How can Alice and Bob

establish a shared key over

a public insecure channel?
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Abstract—Two kinds of contemporary developments in cryp-
tography are examined. Widening applications of teleprocessing
have given rise toa need for now types of eryptographic systems,
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IT-22, NO. 6, NOVEMBER 1976

The best known cryptographic problem is that of pri-
vacy: preventing the unauﬂmuzed extraction of informa-
tion from over an insecure channel. In

which minimize the need for secure key
supply the equivalent of a written signature. This paper suggests
ways to solve these currently open problems. It also discusses how
the theories of communi n and computation are beginning to
provide the tools to solve cryptographic problems of long stand-
ing.

1. INTRODUCTION
E STAND TODAY on the brink of a revolution in
cryptography. The development of cheap digital
hardware has freed it from the design li of me-

order to use cryptography to insure privacy, however, it is
currently necessary for the communicating parties to share
a key which is known to no one else. This is done by send-
ing the key in advance over some secure channel such as
private courier or registered mail. A private conversation
between two people with no prior acquaintance is a com-
mon occurrence in business, however, and it is unrealistic
to expect initial business contacts to be postponed long
enough for keys to be transmitted by some physical means.
The cost and delay imposed by this key distribution
pmhlem is a major barrier to the transfer of business

chanical computing and brought the cost of high grade
cryptographic devices down to where they can be used in
such ions as remote cash

and computer terminals. In turn, such applications create
a need for new types of cryptographic systems which

DIFFIE-HELLMAN

science.

‘The development of computer controlled communica-
tion networks promises effortless and inexpensive contact
between people or computers on opposite sides of the

ions to large networks.
Section 111 proposes two approaches to transmitting
keying information over public (i.e., insecure) channels
without compromising the secunLy of the §yblem Ina
public key cry ipk and deciphering are
onvarnad hv distinet kevs F and 1) snch that computing

KEVEXCHANGE [

ws be
hering
of the system to send a message to any other user enci-
phered in such a way that only the intended receiver is able
to decipher it. As such, a public key cryptosystem is a
multiple access cipher. A private conversation can there-
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The multiplicative group F

p a prime number, Fy={12,....,p—1}

[F7 is cyclic. Let g be a generator of the group, i.e.
F; = {g7g2>g3a s ’gp—l} =<g>.

Example: 2 is a generator of F{; = {1,2,...,10}.




A large prime number p
A generator g of F}
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A large prime number p
A generator g of F}

A=g° A
B=g¢° B

DISCRETE LOGARITHM PROBLEM

Given g%, compute a

Goal
ab



[F is an example of finite abelian group.

The Diffie-Hellman key exchange works with any finite
abelian group. In particular we are interested in finite abelian
groups G such that:
e Given g in G and 1 < a < ord(g), it is easy to compute
g%
e Given g in G and x = g7, it is difficult to compute a
(Discrete Logarithm problem)

Which other group can be “even more

interesting” for a Diffie—-Hellman key
exchange?
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Use of Elliptic Curves in Cryptography

Victor S. Miller
Exploratory Computer Science, IBM Research, P.O. Box 218, Yorktown Heights, NY 10598
ABSTRACT

We discuss the use of elliptic curves in cryptography. In particular, we propose an analogue of the
Diffie-Hellmann key exchange protocol which appears to be immune from attacks of the style of
Western, Miller, and Adleman. With the current bounds for infeasible attack, it appears to be
about 20% faster than the Diffie-Hellmann scheme over GF(p). As computational power grows,
this disparity should get rapidly bigger.

MATHEMATICS OF COMPUTATION
VOLUME 4%, NUMBER |
JANUARY 19K7, PAGES 201- 209

ELLIPTIC CURVE

DIFFIE—HELLMAN Elliptic Curve Cryptosystems

By Neal Koblitz

This paper is dedicated 10 Daniel Shanks on the occasion of his seventieth birthdiy

Abstract. We discuss analogs based on elliptic curves over finite fields of public key
ery which use the multiplicative group of a finite field. These elliptic curve
cryptosystems may be more secure, because the analog of the discrete logarithm problem on
elliptic curves is likely to be harder than the classical discrete logarithm problem, especially
over GF(2"). We discuss the question of primitive points on an elliptic curve modulo p. and
give a theorem on nonsmoothness of the order of the cyclic subgroup generated by a global
point
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Elliptic curves

E:y>=x3+ax+b, 4a°+27b%>+£0.

If a,beR:
ER) ={(x,y) € R?: y?> = x3 + ax + b} U {o0}

P

b e,

y2=x3—2x+2




Elliptic curves over finite fields

E:y?>=x>4ax+b,

a,be T, 4a°+27b* #£0.

E(Fp) = {(x,y) € (Fp)? : y* = x* + ax + b} U {o0}

47

Re

(11,29)
0(12725)

D(40,40)

E(F47) is an
abelian group
with 55 elements

E:y?=x3—2x42over Fuy 47



v =23 — 20+ 2/Fyy
P(16,27)

(9, 14)

(19, 33)

k = (36,3) k = (36,3)




y2 =23 -2 + 2/F47
P(16,27)

(9,14)
(19, 33)

DISCRETE LOGARITHM PROBLEM

Compute a suchthataP = (9,14)




Curve25519

Public parameters:
o y2 = x3 1 48662x% + x
e p=2%"_10=
= 57896044618658097711785492504343953926634992332820282019728792003956564819949

p =

(9 , 14781619447589544791020593568409986887264606134616475288964881837755586237401)
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SHOR'SALGORITHM

computes discrete logarithms on a
hypothetical quantum computer in
polynomial time

First working 2-qubit
quantum computer

NSA

announced that it is planning to

tvanaitinn in tha nAat fan Aictant

NIST
launched the
Post-Quantum Cryptography
competition

53-qubit quantum computer by IBM
commercially available

IBM Q quantum computer
Stephen Shankland
(Flickr)
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Hard Homogeneous Spaces

Jean-Marc Couveignes

August 24, 2006

Abstract

J. Cryptol. (2009) 22: 93-113
DOI: 10.1007/500145-007-9002-x

Key Words: Discrete Logarithm, Al

This note was written in 1997 after a talk T gave at the séminaire de
complexité et cryptographie at the Ecole Normale Supérieure After it was
rejected at crypto97 I forgot it until a few colleagues of mine informed
me that it could be of some interest to some rescarchers in the field of
Although I am not quite happy with the
redaction of this note, I believe it is more fair not to improve nor correct
it yet. So I leave it in its original state, including misprints. I just added

algorithmic and cryptography.
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Cryptographic Hash Functions from Expander Graphs
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Abstract.  We propose constructing provable collision resistant hash functions from

der graphs in which finding cycles is hard. As examples, we investigate two spe-
cific families of optimal expander graphs for provable collision resistant hash function
constructions: the families of Ramanujan graphs constructed by Lubotzky-Phillips-

is constructed from one of

this pargraph.
later.

‘We introduce the notion of
develop the corresponding th
based on the discrete logarith}
homogeneous space. Indeed,

arithm problem. They are b
shows the existence of scheme
do not rely on the difficulty
group nor factoring integers.
class field theory to provide a|
logarithm problems (on mul
points on elliptic curves) and
algorithmic questions related

‘The paper is looking for a
problem both mathematically
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Towards Quantum-Resistant Cryptosystems
from Supersingular Elliptic Curve Isogenies

David Jao! and Luca De Feo?
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ISOGENY BASED CRYPTOGRAPHY

scheme is that we transmit the images of torsion bases under the isogeny
in order to allow the two parties to arrive at a common shared key despite
the noncommutativity of the endomorphism ring. Our work is motivated
by the recent development of a subexponential-time quantum algorithm

lar elliptic curves over ¥ with ¢-
fion resistance follows frorh hardness
iptic curves. For the LPS graphs, the
m in group theory. Constructing our
les that the outputs closely approx-
useul for arguing that the output is
‘We estimate the cost per bit to com-
Jrash function for several members of
imings.

Jander eraphs, Blliptic curve cryptog-
J ettiptic curves,

jon

citing proposals for new cryptographic

nstruct an efficiently computable hash
fion s called a provable collision resis-
Ive some hard mathematical problem
bs in the scheme proposed in [8]. We
Lot fecein- from expander graphs.
‘00 large” subset of
aphs leads to other
sproximate the uni-
s used as directions




We are not going to work with inside a fixed elliptic curve
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We are going to work with a set of elliptic curves




Supersingular (-isogeny graph over F

Vertices Edges

Supersingular elliptic curves

E:y?=x34+ax+b, abe F o, Isogenies of degree ¢

: E1 e E2
. 43 AG) B
(Je = 1728 45 € F2) Con) = (S8 26)

‘ ‘34a+110
193a+121 I

193a+192




Supersingular (-isogeny graph over F

Vertices Edges
Supersingular elliptic curves

E:y2=x3+ax+b, abelF Isogenies of degree ¢

p?
@ E; — Ep
A(x) ()
(JE =1728 43+27bze]F ) (oy) = (gl(x)’gz(x)y>

p = 227
{=2

g 1yt =2+ 120z + 214

Ego1 : 9 = 2% + 69z + 128
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linear maps

Tate modules
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SUPERSINGULAR ISOGENY GRAPHS

connecting ideals

QUATERNION ALGEBRAS




10 MaTHEMATICIaNS/CRYPTOGRAPHERS WERE
MENTIONED IN THIS TalK,
ONLy 1 18 a womaN,
PrOBaBLY IN THE PasT WE WERE NOT GIVEN THE
SAaME OPPORTUNITIES.
Bur T0D2y WE caN all CONTRIBUTE TO & DIVERSE
aND EQUAL WORID, EacH OF US IN OUR SMAll Ways,
DIVERSITY 1S RICHNESS, aND WE BECOME RICH BY
INYESTING IN DIFFERENT KINDS aND SHaDES OF
PEOPIE,



