Bridge - MGF 3301-Section 001

Quiz 4 - Solution

02/26/2020
Instructions: The total number of points for this quiz is 14 . However, your final score will be the minimum between the total number of your points and 11. Calculators are not allowed (and actually not needed).

Exercise 1
 (7 points)

Recall the following definition from the homework:

Definition

Given two integers a and b we say that a divides b, and we write $a \mid b$, if there exists an integer k such that

$$
b=k a .
$$

Moreover, we write $a \nmid b$ if a does not divide b.

Prove by contrapositive the following claim (please, write down the contrapositive of the statement first):

Claim: Let a and b in \mathbb{Z}. If $5 \nmid a b$, then $5 \nmid a$ and $5 \nmid b$.

Solution

Contrapositive: Let a and b in \mathbb{Z}. If $5 \mid a$ or $5 \mid b$, then $5 \mid a b$.
Proof. We will prove the claim by proving its contrapositive. Let $a, b \in \mathbb{Z}$. Assume that $5 \mid a$ or $5 \mid b$. We have to consider then two separate cases:
Case 1: If $5 \mid a$ then, by definition, there exists $k \in \mathbb{Z}$ such that $a=5 k$. Then $a b=$ $(5 k) b=5(k b)=5 h$, with $h=k b \in \mathbb{Z}$. Then $5 \mid a b$.
Case 2: If $5 \mid b$ then, by definition, there exists $k \in \mathbb{Z}$ such that $b=5 k$. Then $a b=a(5 k)=$ $5(a k)=5 h$, with $h=a k \in \mathbb{Z}$. Then $5 \mid a b$.
So in any case $5 \mid a b$.

Exercise 2

(7 points)
Prove by contradiction the following claim and highlight what is the contradiction (i.e. identify the proposition Q such that you have $Q \wedge(\sim Q))$. Note that you may use previous results proved in class. In case state them.

$$
\text { Claim: For all } a \text { and } b \text { in } \mathbb{Z}, a^{2}-4 b-2 \neq 0 \text {. }
$$

Solution

Proof. By contradiction, assume that there exist $a, b \in \mathbb{Z}$ such that $a^{2}-4 b-2=0$. Then $a^{2}=4 b+2=2(b+1)$, which means that a^{2} is an even integer. Because of a previous result seen in class (" n is even $\Leftrightarrow n^{2}$ is even"), this implies that a is also even. Then, by definition, there exists $k \in \mathbb{Z}$ such that $a=2 k$. So we obtain:

$$
(2 k)^{2}-4 b-2=0 \Leftrightarrow 4 k^{2}-4 b-2=0 \Leftrightarrow 2 k^{2}=2 b+1 .
$$

So $2 k^{2}$ is odd (since in the last identity we see that it can be written in the form $2 h+1$ for some $h \in \mathbb{Z}$), but it is also even (since it can be written in the form 2ℓ for some $\ell \in \mathbb{Z}$). This is a contradiction, since an integer can not be even and odd at the same time. Therefore for all a and b in $\mathbb{Z}, a^{2}-4 b-2 \neq 0$.

Contradiction: " $2 k^{2}$ is odd" and " $2 k^{2}$ is even"

