Bridge - MGF 3301 - Section 001

Quiz 5 - Solution

03/04/2020

Instructions: The total number of points for this quiz is 11 (there is 1 bonus point). Calculators are not allowed (and actually not needed).

EXERCISE 1 (6 points)

Describe the following sets with a *set-builder notation*, i.e. as truth set of an open sentence.

(a)
$$A = \{2, 3, 5, 7, 11, 13, \ldots\}$$

Solution $A = \{n \in \mathbb{N} : n \text{ is prime}\}.$

(b)
$$B = \{1, 3, 5, 7, \dots, 49\}$$

Solution $B = \{n \in \mathbb{N} : n = 2k + 1, k \in \mathbb{Z} \text{ and } 0 \le k \le 24\}.$

(c)
$$C = \left\{\frac{1}{5}, \frac{1}{10}, \frac{1}{15}, \frac{1}{20}, \ldots\right\}$$

Solution $C = \left\{ x \in \mathbb{Q} : x = \frac{1}{5k}, k \in \mathbb{N} \right\}.$

(d) $D = \left\{\frac{1}{5}, \frac{2}{10}, \frac{3}{15}, \frac{4}{20}, \ldots\right\}$

Solution $D = \left\{ x \in \mathbb{Q} : x = \frac{k}{5k}, k \in \mathbb{N} \right\}.$

Let $a \in \mathbb{Z}$. Recall the following notation:

$$a\mathbb{Z} := \{ n \in \mathbb{Z} \mid n = ak, k \in \mathbb{Z} \}.$$

(a) Prove that $6\mathbb{Z} \subseteq 3\mathbb{Z}$.

Solution

Proving that $6\mathbb{Z} \subseteq 3\mathbb{Z}$ is equivalent to prove that if $n \in 6\mathbb{Z}$, then $n \in 3\mathbb{Z}$. Let $n \in 6\mathbb{Z}$. Then there exists $k \in \mathbb{Z}$ such that $n = 6k \Rightarrow n = 3 \cdot (2k)$. So n is also a multiple of 3, which implies that $n \in 3\mathbb{Z}$.

(b) Prove that $6\mathbb{Z} \neq 3\mathbb{Z}$.

Solution

It is enough to show that $3\mathbb{Z} \notin 6\mathbb{Z}$. For that, note that $3 \in 3\mathbb{Z}$ (since $3 = 3 \cdot 1$ is a multiple of 3), but $3 \notin 6\mathbb{Z}$. Indeed if, to the contrary, $3 \in 6\mathbb{Z}$, then $\exists k \in \mathbb{Z}$ such that $3 = 6k \Rightarrow \frac{1}{2} = k$, which is a contradiction with the fact that k is an integer.