Bridge - MGF 3301 - Section 001

Quiz 5 - Solution
 03/04/2020

Instructions: The total number of points for this quiz is 11 (there is 1 bonus point). Calculators are not allowed (and actually not needed).

Exercise 1
 (6 points)

Describe the following sets with a set-builder notation, i.e. as truth set of an open sentence.
(a) $A=\{2,3,5,7,11,13, \ldots\}$

Solution

$$
A=\{n \in \mathbb{N}: n \text { is prime }\} .
$$

(b) $B=\{1,3,5,7, \ldots, 49\}$

Solution

$$
B=\{n \in \mathbb{N}: n=2 k+1, k \in \mathbb{Z} \text { and } 0 \leq k \leq 24\}
$$

(c) $C=\left\{\frac{1}{5}, \frac{1}{10} \frac{1}{15}, \frac{1}{20}, \ldots\right\}$

Solution

$$
C=\left\{x \in \mathbb{Q}: x=\frac{1}{5 k}, k \in \mathbb{N}\right\} .
$$

(d) $D=\left\{\frac{1}{5}, \frac{2}{10} \frac{3}{15}, \frac{4}{20}, \ldots\right\}$

Solution

$$
D=\left\{x \in \mathbb{Q}: x=\frac{k}{5 k}, k \in \mathbb{N}\right\} .
$$

Exercise 2

(5 points)
Let $a \in \mathbb{Z}$. Recall the following notation:

$$
a \mathbb{Z}:=\{n \in \mathbb{Z} \mid n=a k, k \in \mathbb{Z}\} .
$$

(a) Prove that $6 \mathbb{Z} \subseteq 3 \mathbb{Z}$.

Solution

Proving that $6 \mathbb{Z} \subseteq 3 \mathbb{Z}$ is equivalent to prove that if $n \in 6 \mathbb{Z}$, then $n \in 3 \mathbb{Z}$. Let $n \in 6 \mathbb{Z}$. Then there exists $k \in \mathbb{Z}$ such that $n=6 k \Rightarrow n=3 \cdot(2 k)$. So n is also a multiple of 3 , which implies that $n \in 3 \mathbb{Z}$.
(b) Prove that $6 \mathbb{Z} \neq 3 \mathbb{Z}$.

Solution

It is enough to show that $3 \mathbb{Z} \nsubseteq 6 \mathbb{Z}$. For that, note that $3 \in 3 \mathbb{Z}$ (since $3=3 \cdot 1$ is a multiple of 3), but $3 \notin 6 \mathbb{Z}$. Indeed if, to the contrary, $3 \in 6 \mathbb{Z}$, then $\exists k \in \mathbb{Z}$ such that $3=6 k \Rightarrow \frac{1}{2}=k$, which is a contradiction with the fact that k is an integer.

