Bridge - MGF 3301 - Section 001

Quiz 6 - Solution

04/08/2020

Exercise 1

(12 points)
Consider the following relation on \mathbb{Z} :

$$
R=\left\{(a, b) \in \mathbb{Z}^{2}: 3 \mid(a-b)\right\} .
$$

(a) (2 points) Which ordered pairs among the following belongs to R ? Select all that apply.

- $(23,17)$
- $(17,23)$
$\square(18,17)$
■ (17,17)
(b) (2 points) Prove that R is reflexive on \mathbb{Z}.

Solution

For all $a \in \mathbb{Z}$ we have that $a-a=0$ and $3 \mid 0$. So $(a, a) \in R, \forall a \in \mathbb{Z}$, which implies that R is reflexive.
(c) (2 points) Prove that R is symmetric.

Solution

Let $a, b \in \mathbb{Z}$ such that $(a, b) \in R$, i.e. $3 \mid(a-b)$. Then, by definition, there exists $k \in \mathbb{Z}$ such that $a-b=3 k$. Then $b-a=3 \cdot(-k)$, which implies that $3 \mid(b-a)$. Hence $(b, a) \in R$, which proves that R is symmetric.
(d) (2 points) Prove that R is transitive.

Solution

Let $a, b, c \in \mathbb{Z}$. Assume that $(a, b),(b, c) \in R$, i.e. $3 \mid(a-b)$ and $3 \mid(b-c)$. Then, by definition, there exist $k, h \in \mathbb{Z}$ such that $a-b=3 k$ and $b-h=3 h$. We have:

$$
a-c=a-b+b-c=3 k+3 h=3(k+h) .
$$

Therefore $3 \mid(a-c)$, which implies $(a, c) \in R$, proving that R is transitive.

Recall that for $a \in \mathbb{Z}$, we denote $\bar{a}:=\{b \in \mathbb{Z}:(a, b) \in R\}$.
(e) (2 points) Prove that, for the relation R defined previously, we have $\overline{0}=3 \mathbb{Z}$.

Solution

We have

$$
\begin{aligned}
\overline{0} & =\{b \in \mathbb{Z}:(0, b) \in R\}= \\
& =\{b \in \mathbb{Z}:(b, 0) \in R\}= \\
& =\{b \in \mathbb{Z}: 3 \mid(b-0)\}= \\
& =\{b \in \mathbb{Z}: 3 \mid b\}= \\
& =\{b \in \mathbb{Z}: \exists k \in \mathbb{Z} \text { such that } b=3 k\}= \\
& =3 \mathbb{Z} .
\end{aligned}
$$

(f) (2 points) Prove that if $x \in \overline{1}$ then $x=3 k+1$, for some integer k.

Solution
Let $x \in \overline{1}$. Then $(x, 1) \in R$, i.e. $3 \mid(x-1)$. Hence, there exists $k \in \mathbb{Z}$ such that $x-1=3 k$, or equivalently $x=3 k+1$.

