TEST 1 - STUDY GUIDE

Bridge - MGF 3301 - Section 001
When? The first test will take place on Wednesday February 12 at 9:30 am in CMC 118.

Topics: Sections 1.1, 1.2, 1.3, 1.4 of the textbook A Transition to Advanced Mathematics, by Smith, Eggen \& St. Andre, 8th edition.

Office hours:

- Monday February 10: 11am-12pm
- Tuesday February 11: 4-5:30pm.

For the first test, you need to be able to:

- Attribute the truth value to easy propositions.
- Know the truth tables of the five logical connectives: $\sim P, P \wedge Q, P \vee Q, P \Rightarrow Q$, $Q \Leftrightarrow P$.
- Write down the truth table of a propositional form.
- Determine whether two propositional forms are equivalent, whether a propositional form is a tautology, whether a propositional form is a contradiction.
- Use De Morgan's Laws.
- Write the converse and the contrapositive of a conditional sentence.
- Determine the truth set of an open sentence.
- Use the quantifiers \forall, \exists and \exists !
- Determine the truth value of propositions such as " $\forall x, P(x)$ ", " $\exists x$ such that $P(x)$ ", " \exists ! x such that $P(x)$ ", by justifying properly the answer.
- Write non-trivial denials of different kinds of propositions (also containing quantifiers).
- Make use of definitions in a proof.
- Prove directly conditional sentences.
- Solve problems such as the in-class activity Murder Mistery.
- Know all the definitions that appear in the next page.

Review:

- Quizzes 1,2,3 (and their solutions).
- Homework 1,2,3,4.
- In-class activity Murder Mistery.
- Read again all the notes and/or Sections 1.1, 1.2, 1.3, 1.4 of the textbook.

Definitions

- Two propositional forms are equivalent if and only if they have the same truth tables.
- A tautology is a propositional form that is true for every assignments of truth values for its components.
- A contradiction is a propositional form that is false for every assignments of truth values for its components.
- Let P and Q be propositions. The converse of $P \Rightarrow Q$ is $Q \Rightarrow P$. The contrapositive of $P \Rightarrow Q$ is $(\sim Q) \Rightarrow(\sim P)$.
- An integer n is said to be even if and only if $\exists k$ in \mathbb{Z} such that $n=2 k$.
- An integer n is said to be odd if and only if $\exists k$ in \mathbb{Z} such that $n=2 k+1$.
- Given m and n in \mathbb{Z}, the integer n is said to be divisible by m if and only if $\exists k$ in \mathbb{Z} such that $n=k m$.

