TEST 3 - STUDY GUIDE

Bridge - MGF 3301 - Section 001

When? The third test will take place on Wednesday April 22 at 9:30 am.

Topics: Sections 2.4, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 4.3 of the textbook A Transition to Advanced Mathematics, by Smith, Eggen \& St. Andre, 8th edition.

Office hours:

- Tuesday April 21: $5-7 \mathrm{pm}$ or by appointment

For the third test, you need to be able to:

- Prove by induction that a statement is true for all natural numbers (see Exercises 4 and 5 of The Last Homework).
- Prove/disprove that a relation is reflexive, symmetric or transitive (see Exercise 1 of Homework 9 and Exercise 2 of Homework 10).
- Prove that a relation R on a set A is an equivalence relation, describe the equivalence classes of specific elements and compute the set A modulo R (see Exercise 2 of Homework 10).
- Find the domain and range of a relation/function (see Exercise 3a of Homework 9).
- Prove that a family of sets is a partition of a given set (see Exercise 1 of Homework 10).
- Prove/disprove that a function is injective or surjective, find all the pre-images of a given element of the codomain of a function (see Exercises 1 and 2 of The Last Homework).

Moreover, you have to:

- Know all the definitions that appear in the next page and be able to apply them in the proof of other statements.

Review:

- Quiz 6 (and its solutions).
- Homework 8, 9, 10, 11 (and their solutions).
- Read again all the notes and/or Sections 2.4, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 4.3 of the textbook.

Definitions

- The domain of a relation R from A to B is the set:

$$
\operatorname{Dom}(R)=\{x \in A: \exists y \in B \text { such that }(x, y) \in R\} .
$$

- The range of a relation R from A to B is the set:

$$
\operatorname{Rng}(R)=\{y \in B: \exists x \in A \text { such that }(x, y) \in R\}
$$

- If R is a relation from A to B, then the inverse of R is the relation

$$
R^{-1}=\{(y, x):(x, y) \in R\} .
$$

- Let R be a relation from A to B and S be a relation from B to C. The composite of R and S is the relation

$$
S \circ R=\{(a, c): \exists b \in B \text { such that }(a, b) \in R \text { and }(b, c) \in S\} .
$$

- Let R be a relation on a set A.
- R is reflexive on \mathbf{A} if for all $x \in A,(x, x) \in R$.
- R is symmetric if for all $x, y \in A,(x, y) \in R \Rightarrow(y, x) \in R$.
- R is transitive if for all $x, y, z \in A,(x, y) \in R$ and $(y, z) \in R, \Rightarrow(x, z) \in R$.
- A relation R on a set A is an equivalence relation on \mathbf{A} if R is reflexive on A, symmetric and transitive.
- Let R be an equivalence relation on a set A. For $x \in A$, the equivalence class of x modulo R is the set

$$
\bar{x}=\{y \in A:(x, y) \in R\} .
$$

The set

$$
A / R=\{\bar{x}: x \in A\}
$$

of all equivalence classes is called A modulo R.

- Let $m \in \mathbb{N}$. For $x, y \in \mathbb{Z}$ we say that x is congruent to y modulo m and write $x \equiv y(\bmod m)$ if $m \mid(x-y)$.
- We denote by \mathbb{Z}_{m} the set of equivalence classes for the relation congruence modulo m. We have

$$
\mathbb{Z}_{m}=\{\overline{0}, \overline{1}, \ldots, \overline{m-1}\},
$$

where for $0 \leq r \leq m-1$,

$$
\bar{r}=\{m k+r: k \in \mathbb{Z}\} .
$$

- Let A be a nonempty set. \mathcal{P} is a partition of A if \mathcal{P} is a set of subsets of A such that
- $\forall X \in \mathcal{P}, X \neq \varnothing$.
- $\forall X, Y \in \mathcal{P}$ such that $X \neq Y, X \cap Y=\varnothing$.
- $\bigcup_{X \in \mathcal{P}} X=A$.

Definitions

- A function from A to B is a relation f from A to B such that
- the domain of f is A and
- if $(x, y) \in f$ and $(x, z) \in f$ then $y=z$.

The set B is called the codomain of f. When $(x, y) \in f$, we write $f(x)=y$. In this casse we say that y is the image of f at x and that x is a pre-image of y.

- A function $f: A \rightarrow B$ is onto \mathbf{B} (or is a surjection) if $\operatorname{Rng}(f)=B$, or equivalently if

$$
\forall y \in B, \exists x \in A \text { such that } f(x)=y .
$$

- A function $f: A \rightarrow B$ is one-to-one (or is a injection) if

$$
\forall x, y \in A, f(x)=f(y) \Rightarrow x=y
$$

or equivalently if

$$
\forall x, y \in A, x \neq y \Rightarrow f(x) \neq f(y)
$$

- A function $f: A \rightarrow B$ is a one-to-one correspondence (or a bijection) if f is one-to-one and onto B.

