Calculus I - MAC 2311 - Section 007

Homework - Review Test 1 - Solutions

Annamaria Iezzi

1) Compute the following limits (and show all your work):
a) $\lim _{x \rightarrow 0} \frac{x}{x^{2}+1}=\frac{0}{0^{2}+1}=\frac{0}{1}=0$
b) $\lim _{x \rightarrow-1} \frac{x+1}{x^{2}+3 x+2}=\lim _{x \rightarrow-1} \frac{x+1}{(x+1)(x+2)}=\lim _{x \rightarrow-1} \frac{1}{x+2}=\frac{1}{-1+2}=1$
c) $\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}+x-1}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}(x-1)+(x-1)}{x-1}=\lim _{x \rightarrow 1} \frac{\left(x^{2}+1\right)(x-1)}{x-1}=\lim _{x \rightarrow 1} x^{2}+1=2$
d) $\lim _{x \rightarrow 4} \frac{-\sqrt{x}+2}{x-4}=\lim _{x \rightarrow 4} \frac{-\sqrt{x}+2}{x-4} \cdot \frac{-\sqrt{x}-2}{-\sqrt{x}-2}=\lim _{x \rightarrow 4} \frac{(-\sqrt{x})^{2}-2^{2}}{(x-4)(-\sqrt{x}-2)}=\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(-\sqrt{x}-2)}=$ $=\lim _{x \rightarrow 4} \frac{1}{-\sqrt{x}-2}=\frac{1}{-\sqrt{4}-2}=\frac{1}{-2-2}=-\frac{1}{4}$
e) $\lim _{x \rightarrow 0} \frac{x}{\sqrt{2+x}-\sqrt{2-x}}=\lim _{x \rightarrow 0} \frac{x}{\sqrt{2+x}-\sqrt{2-x}} \cdot \frac{\sqrt{2+x}+\sqrt{2-x}}{\sqrt{2+x}+\sqrt{2-x}}=$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{x(\sqrt{2+x}+\sqrt{2-x})}{(\sqrt{2+x})^{2}-(\sqrt{2-x})^{2}}=\lim _{x \rightarrow 0} \frac{x(\sqrt{2+x}+\sqrt{2-x})}{2+x-(2-x)}=\lim _{x \rightarrow 0} \frac{x(\sqrt{2+x}+\sqrt{2-x})}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{\sqrt{2+x}+\sqrt{2-x})}{2}=\frac{\sqrt{2}+\sqrt{2}}{2}=\sqrt{2}
\end{aligned}
$$

f) $\lim _{x \rightarrow \infty} \frac{2 x^{5}-x^{3}+3}{6 x^{5}+1}=\lim _{x \rightarrow \infty} \frac{x^{5}\left(2-\frac{1}{x^{2}}+\frac{3}{x^{5}}\right)}{x^{5}\left(6+\frac{1}{x^{5}}\right)}=\lim _{x \rightarrow \infty} \frac{2-\frac{1}{x^{2}}+\frac{3}{x^{5}}}{6+\frac{1}{x^{5}}}=" \frac{2-\frac{1}{\infty}+\frac{3}{\infty}}{6+\frac{1}{\infty}} "=$

$$
=\frac{2-0+0}{6+0}=\frac{1}{3}
$$

g) $\lim _{x \rightarrow-\infty} \frac{x^{3}-x^{2}+x-1}{x-1}=\lim _{x \rightarrow-\infty} \frac{x^{3}\left(1-\frac{1}{x}+\frac{1}{x^{2}}-\frac{1}{x^{3}}\right)}{x\left(1-\frac{1}{x}\right)}=\lim _{x \rightarrow-\infty} \frac{x^{2}\left(1-\frac{1}{x}+\frac{1}{x^{2}}-\frac{1}{x^{3}}\right)}{1-\frac{1}{x}}=$ $=" \frac{(-\infty)^{2}\left(1-\frac{1}{-\infty}+\frac{1}{\infty}-\frac{1}{-\infty}\right)}{1-\frac{1}{-\infty}} "=" \frac{\infty \cdot 1}{1} "=\infty$
h) $\lim _{t \rightarrow \infty} \frac{t+1}{t^{2}+1}=\lim _{t \rightarrow \infty} \frac{t\left(1+\frac{1}{t}\right)}{t^{2}\left(1+\frac{1}{t^{2}}\right)}=\lim _{t \rightarrow \infty} \frac{1+\frac{1}{t}}{t\left(1+\frac{1}{t^{2}}\right)}=" \frac{1+\frac{1}{\infty}}{\infty \cdot\left(1+\frac{1}{\infty}\right)} "=" \frac{1}{\infty \cdot 1} "=" \frac{1}{\infty} "=0$
i) $\lim _{x \rightarrow-\infty}(x+\sqrt{3-x})=\lim _{x \rightarrow-\infty} x\left(1+\frac{\sqrt{3-x}}{x}\right)=\lim _{x \rightarrow-\infty} x\left(1+\frac{\sqrt{3-x}}{-\sqrt{x^{2}}}\right)=$ $=\lim _{x \rightarrow-\infty} x\left(1-\sqrt{\frac{3-x}{x^{2}}}\right)=\lim _{x \rightarrow-\infty} x\left(1-\sqrt{\frac{3}{x^{2}}-\frac{1}{x}}\right)="-\infty \cdot\left(1-\sqrt{\frac{3}{\infty}-\frac{1}{-\infty}}\right) "=$ $="-\infty \cdot(1-\sqrt{0-0}) "="-\infty \cdot 1 "=-\infty$

Here, between the second and the third step we used the fact that when $x<0$ (here $x \rightarrow-\infty)$ then $x=-|x|=-\sqrt{x^{2}}$, and between the third and the fourth we used the fact that $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$.
j) $\lim _{x \rightarrow 2} \frac{x-3}{(x-2)^{2}}$

We will solve this limit by computing the left-hand and the right-hand limits:
$\lim _{x \rightarrow 2^{-}} \frac{x-3}{(x-2)^{2}}=" \frac{2-3}{\left(0^{-}\right)^{2}}$ " $=" \frac{-1}{0^{+}} "=-\infty$. (Remember that when $x \rightarrow 2^{-}$then $x<$ 2 so that $x-2<0$ and $\left.x-2 \rightarrow 0^{-}\right)$.
$\lim _{x \rightarrow 2^{+}} \frac{x-3}{(x-2)^{2}}=" \frac{2-3}{\left(0^{+}\right)^{2}} "=" \frac{-1}{0^{+}} "=-\infty$.
Since $\lim _{x \rightarrow 2^{-}} \frac{x-3}{(x-2)^{2}}=\lim _{x \rightarrow 2^{+}} \frac{x-3}{(x-2)^{2}}=-\infty$ then $\lim _{x \rightarrow 2} \frac{x-3}{(x-2)^{2}}=-\infty$
k) $\lim _{x \rightarrow 0} \frac{x^{3}-2}{x}$

We will solve this limit by computing the left-hand and the right-hand limits:
$\lim _{x \rightarrow 0^{-}} \frac{x^{3}-2}{x}=" \frac{0-2}{0^{-}} "=" \frac{-2}{0^{-}} "="-2 \cdot \frac{1}{0^{-}} "="-2 \cdot(-\infty) "=\infty$.
$\lim _{x \rightarrow 0^{+}} \frac{x^{3}-2}{x}=" \frac{0-2}{0^{+}} "=" \frac{-2}{0^{+}} "="-2 \cdot \frac{1}{0^{+}} "="-2 \cdot \infty "=-\infty$.
Since $\lim _{x \rightarrow 0^{-}} \frac{x^{3}-2}{x} \neq \lim _{x \rightarrow 0^{+}} \frac{x^{3}-2}{x}$ then $\lim _{x \rightarrow 0} \frac{x^{3}-2}{x}$ does not exist.

1) $\lim _{\alpha \rightarrow 0} \frac{\sin (3 \alpha)}{6 \alpha}=\lim _{\alpha \rightarrow 0} \frac{1}{2} \cdot \frac{\sin (3 \alpha)}{3 \alpha}=\frac{1}{2} \cdot \lim _{\alpha \rightarrow 0} \frac{\sin (3 \alpha)}{3 \alpha}=\frac{1}{2} \cdot 1=\frac{1}{2}$.
m) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin \left(x-\frac{\pi}{2}\right)}{x-\frac{\pi}{2}}$

If we set $\alpha=x-\frac{\pi}{2}$ then when $x \rightarrow \frac{\pi}{2}$ we have $\alpha \rightarrow 0$ and by substitution in the limit we get:

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin \left(x-\frac{\pi}{2}\right)}{x-\frac{\pi}{2}}=\lim _{\alpha \rightarrow 0} \frac{\sin (\alpha)}{\alpha}=1
$$

n) $\lim _{x \rightarrow 1^{-}} \frac{-|x-1|}{x-1}$

When $x \rightarrow 1^{-}$in particular $x<1$ (or equivalently $x-1<0$) so that $|x-1|=$ $-(x-1)$. Hence we have:

$$
\lim _{x \rightarrow 1^{-}} \frac{-|x-1|}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{-(-(x-1))}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{x-1}{x-1}=1
$$

2) Sketch the graph of a function f which is defined for all real numbers and satisfies simultaneously the following:
a) $\lim _{x \rightarrow \infty} f(x)=4$
b) The line $y=-1$ is a horizontal asymptote.
c) $f(0)=1$.
d) The line $x=2$ is a vertical asymptote.
e) $\lim _{x \rightarrow 2^{+}} f(x)=-\infty$.
f) $x=1$ is a solution for the equation $f(x)=0$.

Solution:

Let us translate some of these conditions geometrically.
a) $\lim _{x \rightarrow \infty} f(x)=4$: this means that the line $y=4$ is an horizontal asymptote for the graph of the function f.
b) The line $y=-1$ is an horizontal asymptote: this means that $\lim _{x \rightarrow \infty} f(x)=-1$ or $\lim _{x \rightarrow-\infty} f(x)=-1$. Since we know already from a) that $\lim _{x \rightarrow \infty} f(x)=4$ then we get $\lim _{x \rightarrow-\infty} f(x)=-1$
c) $f(0)=1$: the graph of the function passes through the point $(0,1)$.
d) The line $x=2$ is a vertical asymptote.
e) $\lim _{x \rightarrow 2^{+}} f(x)=-\infty$.
f) $x=1$ is a solution for the equation $f(x)=0$: this means that $f(1)=0$ that is the graph of the function passes through the point $(1,0)$.

Of course there is not an unique function that satisfies simultaneously all these conditions. An example is given by the function whose graph is the following:

3) Let f be the function:

$$
f(x)=\left\{\begin{array}{l}
\frac{x}{x+1}, \quad x<-1 \\
x^{2}+2, \quad-1 \leq x \leq 2 \\
\cos (\pi x)+5, \quad x>2
\end{array}\right.
$$

a) Compute $f(-1), \lim _{x \rightarrow(-1)^{-}} f(x), \lim _{x \rightarrow(-1)^{+}} f(x), f(2), \lim _{x \rightarrow 2^{-}} f(x), \lim _{x \rightarrow 2^{+}} f(x)$.

Solution:

We remark that $f(x)$ is a piecewise function whose branches are respectively defined on the intervals $(-\infty,-1),[-1,2]$ and $(2, \infty)$.

- When $x=-1$ then $f(x)=x^{2}+2$, hence $f(-1)=(-1)^{2}+2=1+2=3$.
- When $x<-1$ then $f(x)=\frac{x}{x+1}$, hence $\lim _{x \rightarrow(-1)^{-}} f(x)=\lim _{x \rightarrow(-1)^{-}} \frac{x}{x+1}=$ $" \frac{-1}{0^{-}} "=\infty$.
- When $x>-1$ then $f(x)=x^{2}+2$, hence $\lim _{x \rightarrow(-1)^{+}} f(x)=\lim _{x \rightarrow(-1)^{+}} x^{2}+2=$ $(-1)^{2}+2=3$.
- When $x=2$ then $f(x)=x^{2}+2$, hence $f(2)=(2)^{2}+2=6$.
- When $x<2$ then $f(x)=x^{2}+2$, hence $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} x^{2}+2=(2)^{2}+2=6$.
- When $x>2$ then $f(x)=\cos (\pi x)+5$, hence $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \cos (\pi x)+5=$ $\cos (2 \pi)+5=1+5=6$.
b) Is the function f continuous at $x=-1$? And at $x=2$?

Solution:

- Since $\lim _{x \rightarrow(-1)^{-}} f(x)=\infty$ the function f is not continuous at $x=1$ and $x=1$ is an infinite discontinuity.
- Since $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)=6$ then the function f is continuous at $x=2$.

4) State the Intermediate Value Theorem. Then, use it to prove that the equation:

$$
x^{2}+\sin \left(\frac{\pi}{2} x\right)+2=3
$$

has at least one solution in $[0,1]$.

Solution:

Theorem (Intermediate Value Theorem). Let f be a continuous function on an interval $[a, b]$, with $f(a) \neq f(b)$. Then for every number N between $f(a)$ and $f(b)$ there exists $c \in(a, b)$ such that $f(c)=N$.

Let

$$
f(x)=x^{2}+\sin \left(\frac{\pi}{2} x\right)+2
$$

The function f is a continuous function at all the real numbers, since it is the sum of continuous functions (polynomial function, sinus function, constant function). In particular it is continuous on the interval $[0,1]$.

We have

$$
f(0)=0+\sin (0)+2=2 \quad \text { and } \quad f(1)=1+\sin \left(\frac{\pi}{2}\right)+2=1+1+2=4 .
$$

By the Intermediate Value Theorem, for all $2 \leq N \leq 4$ there exists a number $c \in(0,1)$ such that $f(c)=N$. In particular this is true for $N=3$. Hence the equation $f(x)=3$ has a solution in $[0,1]$.
5) Write the equations of the vertical and horizontal asymptotes of the following function:

$$
f(x)=\frac{3 x^{3}+4 x}{x^{3}-2 x} .
$$

Solution:

We recall that a function has an horizontal asymptote if and only if at least one of the following limits is finite: $\lim _{x \rightarrow \infty} f(x), \lim _{x \rightarrow-\infty} f(x)$. If $\lim _{x \rightarrow \infty} f(x)=L<\infty$ or $\lim _{x \rightarrow-\infty} f(x)=$ $L<\infty$ then the line $y=L$ is an horizontal asymptote (it is clear that a function can have at most two different horizontal asymptotes).

In our case we have:
$\lim _{x \rightarrow \infty} \frac{3 x^{3}+4 x}{x^{3}-2 x}=\lim _{x \rightarrow \infty} \frac{x^{3}\left(3+\frac{4}{x^{2}}\right)}{x^{3}\left(1-\frac{2}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{3+\frac{4}{x^{2}}}{1-\frac{2}{x^{2}}}=3$.
In a totally analogous way we can show that $\lim _{x \rightarrow-\infty} \frac{3 x^{3}+4 x}{x^{3}-2 x}=3$.
We deduce that the line $y=3$ is the unique horizontal asymptote for the function f.

We recall that a function has vertical asymptotes in correspondence of all the points that are infinite discontinuities. If the point $x=a$ is an infinite discontinuity, then the line $x=a$ is a vertical asymptote.

In the case of a rational function the infinite discontinuities have to be found among the values of x that make the denominator equal to 0 (but possibly some of these values are not infinite discontinuities...).

Let us consider now our function $f(x)=\frac{3 x^{3}+4 x}{x^{3}-2 x}$. We can factor its denominator as $x^{3}-2 x=x\left(x^{2}-2\right)=x(x-\sqrt{2})(x+\sqrt{2})$. Let us check if $x=0, x=\sqrt{2}$ and $x=-\sqrt{2}$ are infinite discontinuities.

- $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{3 x^{3}+4 x}{x^{3}-2 x}=\lim _{x \rightarrow 0} \frac{x\left(3 x^{2}+4\right)}{x\left(x^{2}-2\right)}=\lim _{x \rightarrow 0} \frac{3 x^{2}+4}{x^{2}-2}=\frac{0+4}{0-2}=-2$.
- $\lim _{x \rightarrow \sqrt{2}^{-}} f(x)=\lim _{x \rightarrow \sqrt{2}^{-}} \frac{3 x^{3}+4 x}{x^{3}-2 x}=\lim _{x \rightarrow \sqrt{2}^{-}} \frac{3 x^{3}+4 x}{x(x-\sqrt{2})(x+\sqrt{2})}=" \frac{3(\sqrt{2})^{3}+4(\sqrt{2})}{\sqrt{2}\left(0^{-}\right)(2 \sqrt{2})} "=$ $=$ "a positive guy $\cdot \frac{1}{0^{-}} "=-\infty$.
- $\lim _{x \rightarrow(-\sqrt{2})^{-}} f(x)=\lim _{x \rightarrow(-\sqrt{2})^{-}} \frac{3 x^{3}+4 x}{x^{3}-2 x}=\lim _{x \rightarrow(-\sqrt{2})^{-}} \frac{3 x^{3}+4 x}{x(x-\sqrt{2})(x+\sqrt{2})}=" \frac{3(-\sqrt{2})^{3}+4(-\sqrt{2})}{-\sqrt{2}(-2 \sqrt{2})\left(0^{-}\right)} "=$ $=$ "a negative guy $\cdot \frac{1}{0^{-}} "=\infty$.

We obtain that only $x=\sqrt{2}$ and $x=-\sqrt{2}$ are vertical asymptotes and they are all the vertical asymptotes of the function f.
6) Find the derivative (or the instantaneous rate of change) of the function $f(x)=\sqrt{x}+1$ at the point $a=4$. Then, write the equation of the tangent line to the curve $y=f(x)$ at the point $P(4,3)$.

Solution:

By definition we have that the derivative of a function f at a point a is given by:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

If this limite exists and is finite, then the equation of the tangent line to the curve $y=f(x)$ at the point $(a, f(a))$ is given by:

$$
y-f(a)=f^{\prime}(a)(x-a)
$$

In our exercice $f(x)=\sqrt{x}+1$ and $a=4$. Then:

$$
\begin{aligned}
& f^{\prime}(4)=\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{4+h}+1-(\sqrt{4}+1)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h} \cdot \frac{\sqrt{4+h}+2}{\sqrt{4+h}+2}= \\
= & \lim _{h \rightarrow 0} \frac{4+h-4}{h(\sqrt{4+h}+2)}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{4+h}+2}=\frac{1}{4} .
\end{aligned}
$$

The equation of the tangent line to the curve $y=f(x)$ at the point $P(4, f(4))=(4,3)$ is given by $y-3=\frac{1}{4}(x-4)$, that is $y=\frac{1}{4} x+2$.

