Calculus I - MAC 2311

Homework - Review Test 2

Annamaria Iezzi \& Myrto Manolaki

Ex 1. (20 points) Compute the derivatives of the following functions (and show your work):
a) $f(x)=\sqrt{x}+\frac{1}{x}+8$
b) $f(x)=\cos \left(x^{8}\right)$
c) $f(x)=\cos ^{8}(x)$
d) $f(t)=\sqrt{t^{5}}$
e) $f(x)=\frac{1}{\sqrt{\pi}}$
f) $f(x)=x^{2} \ln (x)$
g) $f(x)=\frac{e^{x}}{\sin (3 x)}$
h) $f(x)=e^{\ln (\sin (x))}$
i) $f(x)=\sin (\tan (8 x))$
j) $f(u)=e^{u} \cos (u) \tan (u)$

Ex 2. $(\mathbf{1 0}+\mathbf{1 0}$ points) Consider the curve given by the equation

$$
x^{2} y^{2}+x y=2 .
$$

a) Use implicit differentiation to find y^{\prime} (i.e. $\frac{d y}{d x}$).
b) Find an equation of the tangent line to the above curve at the point $(1,1)$.

Ex 3. $(5+5+5+5$ points)

Let f and g be the functions whose graphs are shown above and let

$$
h(x)=f(x)+g(x), \quad u(x)=f(x) g(x), \quad v(x)=\frac{f(x)}{g(x)}, \quad w(x)=g(f(x))
$$

Compute $h^{\prime}(1), u^{\prime}(1), v^{\prime}(1)$ and $w^{\prime}(1)$.

Ex 4. $(5+5+10$ points) A couple of alligators meets at the intersection of Bruce B. Downs Blvd and Fowler Ave for organizing a romantic dinner. The male alligator starts running east at a speed of 0.4 miles per minute to chase a USF student. At the same time the female alligator starts running north at a speed of 0.3 miles per minute to chase a USF instructor.

At a given time t (measured in minutes), let $x(t)$ be the distance between the male alligator and the intersection point, $y(t)$ be the distance between the female alligator and the intersection point and $z(t)$ be the distance between the two alligators.
a) Find an equation that relates $x(t), y(t)$ and $z(t)$.
b) Compute $x(5), y(5)$ and $z(5)$.
c) At what rate is the distance between the two alligators increasing after 5 minutes?

Ex 5. $(5+5+5+5$ points) Which statements are True/False? Justify your answers.
a) If $f(0)=g(0)$ then $f^{\prime}(0)=g^{\prime}(0)$.
b) If $f(x)=\cos (x)$ then $f^{\prime \prime}(0)=0$.
c) If the graphs of two functions f and g have the same tangent line at 0 then $f^{\prime}(0)=$ $g^{\prime}(0)$.
d) The function $f(x)=|x-2|$ is differentiable at 2 since it is continuous at 2 .

