
Calculus I - MAC 2311 - Section 007

Homework - Review Test 3 - Solutions
Annamaria Iezzi & Myrto Manolaki

Ex 1. Compute the following limits. If you use l’Hospital’s Rule state which type of indeter-
minate form you have.

a) lim
x→∞

ln(1 + x2)

x2

Solution:

We have limx→∞ ln(1 + x2) = ∞ and limx→∞ x
2 = ∞, so that we are faced with

the indeterminate form ∞
∞ . Hence we can directly apply L’Hospital’s Rule:

lim
x→∞

ln(1 + x2)

x2
= lim

x→∞

(
ln(1 + x2)

)′
(x2)′

= lim
x→∞

2x
1+x2

2x
= lim

x→∞

2x

2x(1 + x2)
= lim

x→∞

1

1 + x2
= 0.

b) lim
x→0

sin(πex)

x

Solution:

We have limx→0 sin(πex) = sin(π) = 0 and limx→0 x = 0, so that we are faced with
the indeterminate form 0

0 . Hence we can directly apply L’Hospital’s Rule:

lim
x→0

sin(πex)

x
= lim

x→0

(sin(πex))′

(x)′
= lim

x→0

cos(πex) · πex

1
= cos(πe0) · πe0 = cos(π) · π = −π.

c) lim
x→∞

e−x + 1

x

Solution:

We recall that limx→∞ e
−x = 0, so that:

lim
x→∞

e−x + 1

x
=

limx→∞(e−x + 1)

limx→∞ x
= “

0 + 1

∞
” = “

1

∞
” = 0.

Hence, for computing this limit we do not need to use L’Hospital’s rule (actually
we can not apply it, since the limit does not involve any indeterminate form).

d) lim
x→0+

(ex + x)
1
x

Solution:

Let us set:

y = (ex + x)
1
x .

We have:

lim
x→0+

(ex + x)
1
x = lim

x→0+
y = lim

x→0+
eln(y) = elimx→0+ ln(y).

1
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Thus, all we have to do is to compute limx→0+ ln(y):

lim
x→0+

ln(y) = lim
x→0+

ln
(

(ex + x)
1
x

)
= lim

x→0+

1

x
ln (ex + x) = lim

x→0+

ln (ex + x)

x
.

Now we have limx→0+ ln (ex + x) = ln(e0 + 0) = ln(1) = 0 and limx→0+ x = 0, so
that we are faced with the indeterminate form 0

0 . Hence we can apply L’Hospital’s
Rule:

lim
x→0+

ln (ex + x)

x
= lim

x→0+

ex+1
ex+x

1
= lim

x→0+

ex + 1

ex + x
=
e0 + 1

e0 + 0
=

2

1
= 2.

Hence we get limx→0 ln(y) = 2 so that

lim
x→0+

(ex + x)
1
x = elimx→0+ ln(y) = e2.

e) lim
x→∞

x
(π

2
− tan−1(x)

)
Solution:

We have limx→∞ x = ∞ and limx→∞
(
π
2 − tan−1(x)

)
= π

2 − limx→∞ tan−1(x) =
π
2 −

π
2 = 0, so that we are faced with the indeterminate form ∞ · 0. Hence we

rewrite the limit in the following way:

lim
x→∞

π
2 − tan−1(x)

1
x

Now the indeterminate form is 0
0 and we can apply L’Hospital’s Rule:

lim
x→∞

π
2 − tan−1(x)

1
x

= lim
x→∞

(
π
2 − tan−1(x)

)′(
1
x

)′ = lim
x→∞

− 1
1+x2

− 1
x2

= lim
x→∞

x2

1 + x2
= 1.

Ex 2. After their romantic dinner at the intersection of Bruce B. Downs and Fowler Avenue,
the alligators from HW 2 decide to hold hands and take a walk along Fowler Avenue.
Their position after t hours was

f(t) =
π

4
− arctan((t− 1)2) miles.

Which is the farthest point from the intersection reached by the alligators between 0 and
2 hours?

Solution:

The problem boils down into a problem of finding the absolute maximum and
minimum values of the continuous function f(t) = π

4 − arctan((t − 1)2) on the
closed interval [0, 2]. Their existence is guaranteed by the Extreme Value Theorem.

• Find the critical numbers of f and their corresponding values.

The function f is continuous and differentiable on R, thus in particular on [0, 2].
Hence, its critical numbers are all the numbers c such that f ′(c) = 0.



3

Here we have:

f ′(x) = − 1

1 + ((t− 1)2)2
· ((t− 1)2)′ = − 2(t− 1)

1 + ((t− 1)2)2
.

Thus f ′(x) = 0 if and only if 2(t−1) = 0, i.e. if and only if t = 1. The corresponding
value at t = 1 is f(1) = π

4 − arctan(0) = π
4 .

• Find the values of f at the endpoints of the interval [0, 2].

We have f(0) = π
4 − arctan(1) = π

4 −
π
4 = 0 and f(2) = π

4 − arctan(1) = π
4 −

π
4 = 0.

• Compare the values obtained in step 1 and step 2 and return the absolute maximum
and the absolute minimum values of f .

The absolute maximum value of f on [0, 2] is given by π
4 miles and the absolute

minimum value is given by 0 miles.

We conclude that the farthest point from the intersection reached by the alligators
between 0 and 2 hours is distant π

4 miles (remark : this is not the case, but if the absolute
minimum value was in absolute value greater than π

4 , this would have been the farthest
point from the intersection. Indeed we are considering the distance - i.e. the absolute
value - of the obtained points from the intersection).

Ex 3. Consider the function

f(x) =
1

x
+ x+ 1.

a) Find the domain of definition of f .

b) Find the horizontal and vertical asymptotes.

c) Find the critical numbers of f .

d) Find the intervals of increase/decrease of f and the local maxima/minima of f .

e) Find the intervals where f concaves upward/downward and the inflection points of
f .

f) Sketch the graph of y = f(x), by using the information you collected above.

Solution:

a) Find the domain of definition of f .

D = R\{0} = (−∞, 0) ∪ (0,∞).

b) Find the horizontal and vertical asymptotes.
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For finding the possible horizontal and vertical asymptotes we have to study the
behavior of the function at the endpoints of the domain, which are in this case
−∞, 0−, 0+,∞.

? Horizontal asymptotes

limx→∞
1
x + x+ 1 = “0 +∞+ 1” =∞.

limx→−∞
1
x + x+ 1 = “0−∞+ 1” = −∞.

Since these two limits are not finite, the function has no horizontal asymptotes.

? Vertical asymptotes

limx→0−
1
x + x+ 1 = “−∞+ 0 + 1” = −∞.

limx→0+
1
x + x+ 1 = “∞+ 0 + 1” =∞.

Hence 0 is an infinite discontinuity and x = 0 is the corresponding vertical
asymptote.

c) Find the critical numbers of f .

The critical numbers of f are the numbers c in the domain of f where f ′(c) = 0 or
f ′(c) does not exist. Let us compute f ′(x).

f ′(x) =

(
1

x
+ x+ 1

)′
= − 1

x2
+ 1 =

−1 + x2

x2
=
x2 − 1

x2
.

? f ′(c) = 0:

We have that f ′(x) = 0 ⇔ x2−1
x2

= 0 ⇔ x2 − 1 = 0 ⇔ (x − 1)(x + 1) = 0 ⇔
x = −1 or x = 1, which are both in the domain D.

? f ′(c) does not exist:

The derivative f ′ is not defined at x = 0, but this point is not in the domain
D.

Hence the critical numbers are x = −1 and x = 1.

d) Find the intervals of increase/decrease of f and the local maxima/minima of f .

We have to study the sign of the first derivative f ′(x). Indeed the function is
increasing in the intervals where f ′(x) > 0 and decreasing in the intervals where
f ′(x) < 0.

f ′(x) + − − +

f(x)

-1 0 1

Remark : On the real line we mark all the values that make the numerator or
the denominator of f ′ equal to 0. In this case the numerator is x2 − 1 and the
denominator x2, so that we consider −1, 0 and 1. Now, in order to determine the
sign of f ′(x) on the intervals (−∞,−1), (−1, 0), (0, 1), (1,−∞), we simply plug
in into f ′(x) a number inside the previous intervals and we keep the sign of the
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obtained value. For example −2 ∈ (−∞,−1) and f ′(−2) = 3
4 > 0, so that f ′(x) > 0

on (−∞,−1).

We conclude that the function f is increasing on the interval (−∞,−1) ∪ (1,∞)
and decreasing on (−1, 0) ∪ (0, 1). We obtain also that x = −1 is a local maximum
point (which corresponds to the local maximum value f(−1) = 1) and x = 1 is a
local minimum point (which corresponds to the local minimum value f(1) = 3).

e) Find the intervals where f concaves upward/downward and the inflection points of
f .

We have to study the sign of the second derivative f ′′(x). Indeed the function
concaves upward in the intervals where f ′′(x) > 0 and concaves downward in the
intervals where f ′′(x) < 0.
The inflection points are the points where f is continuous and the graph of f switches
from being upward to downward, or vice versa.
Let us first compute f ′′(x):

f ′′(x) =

(
x2 − 1

x2

)′
=

(
1− 1

x2

)′
=
(
1− x−2

)′
= −(−2x−3) =

2

x3
.

f ′′(x) − +

DOWN UPf(x)

0

We conclude that the function f concaves downward on the interval (−∞, 0) and
upward on (0,∞).

Attention: Even if at x = 0 the graph of the function switches from being concave
downward to concave upward, this does not correspond to an inflection point, since
f is not continuous at x = 0 (actually 0 does not belong to the domain of f).

f) Sketch the graph of y = f(x), by using the information you collected above.

In the previous steps we obtained the following information:

? D = R\{0} = (−∞, 0) ∪ (0,∞).
? There are no horizontal asymptotes and limx→∞ f(x) =∞ and limx→−∞ f(x) =
−∞.

? The line x = 0 is a vertical asymptote and limx→0− f(x) = −∞ and limx→0+ f(x) =
∞.

? The function f is increasing on the interval (−∞,−1)∪ (1,∞) and decreasing
on (−1, 0) ∪ (0, 1). Moreover x = −1 is a local maximum point (which corre-
sponds to the local maximum value f(−1) = 1) and x = 1 is a local minimum
point (which corresponds to the local minimum value f(1) = 3). Then the
graph of f passes through the points (−1, 1) and (1, 3).

? The function f concaves downward on the interval (−∞, 0) and upward on
(0,∞) and there are no inflection points.
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Ex 4. Among all boxes with a square base and volume 27 cm3, what are the dimensions of the
box which minimize the surface area?

Solution: Let us consider a box with square base and volume 27 cm3.

x

y

x

Let us call:

x: the side length of the base of the box (the sides are all of same length since the
base is a square).
y: the height of the box.

Since the box has prescribed volume 27 cm3, the variables x and y satisfy the following
constraint equation:

Volume : x2y = 27.

We want to minimize the function of the surface area. The surface area of a box is
given by the sum of the areas of the 6 rectangles that cover its surface. In this case we
have:

Surface area : 2x2 + 4xy.

Now, all we have to do is obtaining from this function, which is a priori a function in
two variables, a function in only one variable (indifferently in x or y), and applying the
classical tools for finding the local minimum point/value.



7

From the constraint equation we get

y =
27

x2
.

If we replace this in the surface area function 2x2 + 4xy we obtain the following function
in one variable:

f(x) = 2x2 + 4x
27

x2
= 2x2 +

4 · 27

x
.

Thus, let us find the critical points of f(x) :

f ′(x) = 4x− 4 · 27

x2
=

4x3 − 4 · 27

x2
=

4(x3 − 27)

x2
= 0⇔ 4(x3 − 27) = 0⇔ x3 = 27⇔ x = 3.

Moreover we have:

f ′(x) − +

f(x)

3

Thus x = 3 is a local minimum point (and also the absolute minimum point of f). Hence
we obtain that the dimensions of the box of volume 27 cm3 which minimize the surface
area are x = 3 cm and y = 27

x2
= 3 cm. The box is actually a cube.

Ex 5. Which statements are True/False? Justify your answers.

a) We have cos(sin−1(x)) =
√

1− x2 for all x in [−1, 1].

True. Let us set y = sin−1(x). Then sin(y) = x and −π
2 ≤ y ≤ π

2 . We recall

that in a right triangle sin(y) = opposite leg
hypotenuse . Here sin(y) = x

1 , hence we can consider

the right triangle with hypotenuse of length 1 and opposite leg of length x (see the
picture below):

adjacent leg

hypotenuse opposite leg

y

x1

√
1− x2

Then:

cos(sin−1(2x)) = cos(y) =
adjacent leg

hypotenuse
=

√
1− x2

1
=
√

1− x2, for all x in [−1, 1].
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b) If f is a function which is continuous on [a, b], differentiable on (a, b) and such that
f(a) = f(b) then f has at least one critical point in (a, b).

True. If f is a function which is continuous on [a, b], differentiable on (a, b) and
such that f(a) = f(b), then by Rolle’s theorem there exists a number c in (a, b)
such that f ′(c) = 0. This number c is, by definition, a critical point for f and it is
in (a, b).

c) There exists a function f such that f(0) = 0, f(8) = 8 and f ′(x) ≥ 16 for all x in
[0, 8].

False. Since f ′(x) is defined for all x in [0, 8], the function f is differentiable (then
continuous) on [0, 8]. By the Mean Value Theorem there exists a number c in (0, 8)
such that

f ′(c) =
f(8)− f(0)

8− 0
=

8− 0

8
= 1.

Then it is not true that f ′(x) ≥ 16 for all x in [0, 8].

d) If f ′(x) = g′(x) for all x in R, then f(x) = g(x).

False. If f ′(x) = g′(x) for all x in R then (f−g)′(x) = 0 for all x in R. This implies
that f − g = c where c is a constant (possibly different from 0), i.e. f = g + c. For
example the functions f = x and g = x+ 1 have same derivative f ′(x) = g′(x) = 1
but are different.


