Calculus I - MAC 2311 - Section 007

Homework - Review Test 3 - Solutions

Annamaria lezzi & Myrto Manolaki

Ex 1. Compute the following limits. If you use I'Hospital’s Rule state which type of indeter-
minate form you have.

In(1 + 2?)

a) lim 5

T—00 T

Solution:

We have lim, o0 In(1 4 22) = oo and lim, . 22 = 00, so that we are faced with
the indeterminate form 2. Hence we can directly apply L’Hospital’s Rule:

In(1 + 22 In(1 + 22))’ 2z ) 1
T—500 2 T—500 (;pz)’ o0 2x T—500 2x(1 + mz) z—oo 1 4+ 22

Solution:

We have lim,_,¢ sin(me”) = sin(7) = 0 and lim,_,o z = 0, so that we are faced with
the indeterminate form %. Hence we can directly apply L’Hospital’s Rule:

(sin(me®))’ x

; x T |
lim sin(me?) = lim = lim cos(me?) - me? = cos(me?) - me® = cos(7) - = —7.
r—0 x z—0 (:L')I x—0 1
—r
c) lim ¢
T—00 x
Solution:
We recall that lim,_,,, e~* = 0, so that:
.oe T4+ 1 limg (e 4+ 1) 0+1 1
hm — , — PRA S L 0
z—00 T lim, oo x o0 00

Hence, for computing this limit we do not need to use L’Hospital’s rule (actually
we can not apply it, since the limit does not involve any indeterminate form).

d) lim (ex—i—:c)%

z—0t
Solution:
Let us set:
1
y=(e"+z)=.

We have:

. T ET T In(y) _ Jlim_ In(y)

lim (¢ +2)* = lim y= lim e = e Ma—ot .

z—0+t z—0t z—0t
1



Thus, all we have to do is to compute lim,_,y+ In(y):

1 In (e*
lim In(y) = lim In ((ex —&—x)%) = lim —In(e* 4+ z) = lim M.
z—0+ z—07F z—0t T xz—07F X
Now we have lim,_,g+ In (e® + x) = In(e” + 0) = In(1) = 0 and lim,_,o+ x = 0, so
that we are faced with the indeterminate form %. Hence we can apply L’Hospital’s

Rule:
In (e Lt T4 41 2
20+ x z—0+ 1 ot e+ 040 1
Hence we get lim,_,oIn(y) = 2 so that
. T 1 im In(y) _ 2
lim (e 4+ )z = e™Mano0t =e”.
z—0t
e) lim z (I - tan_l(:v))
T—00 2
Solution:
We have lim,_ ooz = 00 and limg,_ . (g — tan_l(:c)) = 5 —lim; 0 tan~1(z) =
5 — 5 = 0, so that we are faced with the indeterminate form oo - 0. Hence we

rewrite the limit in the following way:

T —tan~!(x)

lim 2 i
T—00 =
x

Now the indeterminate form is % and we can apply L’Hospital’s Rule:

T —tan"(x T —tan”(x L a2
lim 2——~ : ( >: lim (3 - (%)) = lim 1‘::0 = lim =
T—00 = —00 (l) r—oo — = z—oo 1 + x2
X x xT

Ex 2. After their romantic dinner at the intersection of Bruce B. Downs and Fowler Avenue,
the alligators from HW 2 decide to hold hands and take a walk along Fowler Avenue.
Their position after ¢ hours was

f(t) = % —arctan((t — 1)?) miles.
Which is the farthest point from the intersection reached by the alligators between 0 and
2 hours?

Solution:

The problem boils down into a problem of finding the absolute maximum and
minimum values of the continuous function f(t) = I — arctan((t — 1)?) on the
closed interval [0, 2]. Their existence is guaranteed by the Extreme Value Theorem.

e Find the critical numbers of f and their corresponding values.

The function f is continuous and differentiable on R, thus in particular on [0, 2].
Hence, its critical numbers are all the numbers ¢ such that f(c) = 0.



Here we have:

2t — 1)

1 ,
2 (Y = e

A (e

Thus f'(z) = 0 if and only if 2(t—1) = 0, i.e. if and only if ¢ = 1. The corresponding

value at t = 11is f(1) = § — arctan(0) =

T
1
e Find the values of f at the endpoints of the interval [0,2].
We have f(0) = § —arctan(l) = 7 — 7 =0 and f(2) = § —arctan(l) = § — 5 = 0.
o (Compare the values obtained in step 1 and step 2 and return the absolute mazximum
and the absolute minimum values of f.

The absolute maximum value of f on [0,2] is given by 7 miles and the absolute
minimum value is given by 0 miles.

We conclude that the farthest point from the intersection reached by the alligators

between 0 and 2 hours is distant 7 miles (remark: this is not the case, but if the absolute

minimum value was in absolute value greater than 7, this would have been the farthest

point from the intersection. Indeed we are considering the distance - i.e. the absolute
value - of the obtained points from the intersection).

— 0 Ce—————

Ex 3. Consider the function
1
flz)=—+x+1
x
a) Find the domain of definition of f.
b) Find the horizontal and vertical asymptotes.
c¢) Find the critical numbers of f.
d) Find the intervals of increase/decrease of f and the local maxima/minima of f.

e) Find the intervals where f concaves upward/downward and the inflection points of

f.

f) Sketch the graph of y = f(z), by using the information you collected above.

Solution:

a) Find the domain of definition of f.
D =R\{0} = (—00,0) U (0, 00).

b) Find the horizontal and vertical asymptotes.



For finding the possible horizontal and vertical asymptotes we have to study the
behavior of the function at the endpoints of the domain, which are in this case
—00,07,07, c0.

* Horizontal asymptotes

hmx—>oo%+x+1=“0+oo+1”:oo.
hmz—>—oo%+$+1=“0—00—1—1”:—00.

Since these two limits are not finite, the function has no horizontal asymptotes.

* Vertical asymptotes

lim, ,o- 24+24+1=“—-00+0+1" = —o0.
hmm—>0+%+x+1:“m+0+1”:oo.

Hence 0 is an infinite discontinuity and x = 0 is the corresponding vertical
asymptote.

c) Find the critical numbers of f.

The critical numbers of f are the numbers ¢ in the domain of f where f'(¢) =0 or
f'(¢) does not exist. Let us compute f'(x).

1 ' 1 ~1+22 22-1
f/(x):($+$+1> Z—ﬁﬂ-lz 3 = o
* f'(c) =0:
Wehavethatf’(a:)zO@migl:O(:)x2—1:0<:>(x—1)(:v+1)20<:>
x = —1 or x = 1, which are both in the domain D.

* f'(c) does not exist:

The derivative f’ is not defined at z = 0, but this point is not in the domain
D.

Hence the critical numbers are x = —1 and = = 1.

d) Find the intervals of increase/decrease of f and the local mazima/minima of f.

We have to study the sign of the first derivative f’(x). Indeed the function is
increasing in the intervals where f/'(z) > 0 and decreasing in the intervals where
f(x) <0.

~

N

Remark: On the real line we mark all the values that make the numerator or
the denominator of f’ equal to 0. In this case the numerator is 22 — 1 and the
denominator z2, so that we consider —1,0 and 1. Now, in order to determine the
sign of f’(x) on the intervals (—oo,—1), (=1,0), (0,1), (1, —00), we simply plug
in into f’(x) a number inside the previous intervals and we keep the sign of the
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obtained value. For example —2 € (—oo, —1) and f/(—2) = 2 > 0, so that f'(z) >0
on (—oo, —1).

We conclude that the function f is increasing on the interval (—oo, —1) U (1, 00)
and decreasing on (—1,0) U (0,1). We obtain also that z = —1 is a local maximum
point (which corresponds to the local maximum value f(—1) = 1) and x = 1 is a
local minimum point (which corresponds to the local minimum value f(1) = 3).

Find the intervals where f concaves upward/downward and the inflection points of
f-

We have to study the sign of the second derivative f”(z). Indeed the function
concaves upward in the intervals where f”(z) > 0 and concaves downward in the
intervals where f”(z) < 0.

The inflection points are the points where f is continuous and the graph of f switches
from being upward to downward, or vice versa.

Let us first compute f”(z):

~

E

f(x) DOWN

We conclude that the function f concaves downward on the interval (—oo,0) and
upward on (0, 00).

Attention: Even if at x = 0 the graph of the function switches from being concave
downward to concave upward, this does not correspond to an inflection point, since
f is not continuous at x = 0 (actually 0 does not belong to the domain of f).

Sketch the graph of y = f(x), by using the information you collected above.

In the previous steps we obtained the following information:

* D =R\{0} = (—00,0) U (0, 0).

* There are no horizontal asymptotes and lim,_,~ f(z) = oo and lim,_,_, f(z) =
—00.

* The line = 0 is a vertical asymptote and lim,_,q- f(z) = —oc and lim,_,g+ f(z) =
00.

* The function f is increasing on the interval (—oo, —1) U (1, c0) and decreasing
on (—1,0) U (0,1). Moreover x = —1 is a local maximum point (which corre-
sponds to the local maximum value f(—1) = 1) and z = 1 is a local minimum
point (which corresponds to the local minimum value f(1) = 3). Then the
graph of f passes through the points (—1,1) and (1, 3).

* The function f concaves downward on the interval (—oo,0) and upward on
(0,00) and there are no inflection points.
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Ex 4. Among all boxes with a square base and volume 27 cm?, what are the dimensions of the
box which minimize the surface area?

Solution: Let us consider a box with square base and volume 27 cm?.

| 4

T

Let us call:

x: the side length of the base of the box (the sides are all of same length since the
base is a square).
y: the height of the box.

Since the box has prescribed volume 27 cm?, the variables = and y satisfy the following
constraint equation:

Volume : 2%y = 27.

We want to minimize the function of the surface area. The surface area of a box is
given by the sum of the areas of the 6 rectangles that cover its surface. In this case we
have:

Surface area : 222 + 4zxy.
Now, all we have to do is obtaining from this function, which is a priori a function in

two variables, a function in only one variable (indifferently in 2 or y), and applying the
classical tools for finding the local minimum point/value.



From the constraint equation we get

2T
y=—5

If we replace this in the surface area function 222 4 4xy we obtain the following function

in one variable: o7 1.97
f(z) :2;102—1—4;8—2 =227 + .
T T

Thus, let us find the critical points of f(z) :

4-27  da®—4-27 4z’ - 27)

- = =04 -2T) =02 =2T 2 =23

fl(x) =42 — 2 .

Moreover we have:

X

3

~

/() =

RN yd

Thus z = 3 is a local minimum point (and also the absolute minimum point of f). Hence

we obtain that the dimensions of the box of volume 27 ¢cm? which minimize the surface

area are x = 3 cm and y :i—g = 3 cm. The box is actually a cube.

— o CzDoe———

Ex 5. Which statements are True/False? Justify your answers.

a) We have cos(sin~!(x)) = v/1 — 22 for all x in [~1,1].
True. Let us set y = sin™'(z). Then sin(y) = # and =5 < y < 5. We recall

that in a right triangle sin(y) = %. Here sin(y) = §, hence we can consider

the right triangle with hypotenuse of length 1 and opposite leg of length x (see the
picture below):

hypotenuse opposite leg
1 x

d [ ]

adjacent leg
V1 — 22

Then:
djacent 1 V1—a?
cos(sin~1(2z)) = cos(y) = ac)acet 6 _ 1 T _V1- 22, for all x in [—1,1].

~ hypotenuse




b)

If f is a function which is continuous on [a, b], differentiable on (a,b) and such that
f(a) = f(b) then f has at least one critical point in (a,b).

True. If f is a function which is continuous on [a,b], differentiable on (a,b) and
such that f(a) = f(b), then by Rolle’s theorem there exists a number ¢ in (a,b)
such that f/(¢) = 0. This number c is, by definition, a critical point for f and it is
in (a,b).

There exists a function f such that f(0) =0, f(8) = 8 and f'(x) > 16 for all = in
[0, 8].

False. Since f’(x) is defined for all x in [0, 8], the function f is differentiable (then
continuous) on [0, 8]. By the Mean Value Theorem there exists a number ¢ in (0, 8)

such that F8)— f(0) 8—0
(o) — — 2 F _
Then it is not true that f/(z) > 16 for all z in [0, §].

1.

If f'(z) = ¢'(x) for all  in R, then f(z) = g(z).

False. If f'(z) = ¢/(z) for all z in R then (f —g)'(x) = 0 for all  in R. This implies
that f — g = ¢ where ¢ is a constant (possibly different from 0), i.e. f =g+ c. For
example the functions f = x and ¢ = = + 1 have same derivative f'(z) = ¢'(x) =1
but are different.



