Calculus I - MAC 2311-Section 007

Homework - Review Test 3

Annamaria Iezzi \& Myrto Manolaki

Ex 1. ($\mathbf{4 + 4 + 4 + 4 + 4} \mathbf{~ p o i n t s) ~ C o m p u t e ~ t h e ~ f o l l o w i n g ~ l i m i t s . ~ I f ~ y o u ~ u s e ~ l ' H o s p i t a l ' s ~ R u l e ~ s t a t e ~}$ which type of indeterminate form you have.
a) $\lim _{x \rightarrow \infty} \frac{\ln \left(1+x^{2}\right)}{x^{2}}$
b) $\lim _{x \rightarrow 0} \frac{\sin \left(\pi e^{x}\right)}{x}$
c) $\lim _{x \rightarrow \infty} \frac{e^{-x}+1}{x}$
d) $\lim _{x \rightarrow 0^{+}}\left(e^{x}+x\right)^{\frac{1}{x}}$
e) $\lim _{x \rightarrow \infty} x\left(\frac{\pi}{2}-\tan ^{-1}(x)\right)$

Ex 2. (20 points) After their romantic dinner at the intersection of Bruce B. Downs and Fowler Avenue, the alligators from HW 2 decide to hold hands and take a walk along Fowler Avenue. Their position after t hours was

$$
f(t)=\frac{\pi}{4}-\arctan \left((t-1)^{2}\right) \quad \text { miles. }
$$

Which is the farthest point from the intersection reached by the alligators between 0 and 2 hours?

Ex 3. $(\mathbf{2}+\mathbf{3}+\mathbf{2}+\mathbf{4}+\mathbf{4}+\mathbf{5}$ points) Consider the function

$$
f(x)=\frac{1}{x}+x+1
$$

a) Find the domain of definition of f.
b) Find the horizontal and vertical asymptotes.
c) Find the critical numbers of f.
d) Find the intervals of increase/decrease of f and the local maxima/minima of f.
e) Find the intervals where f concaves upward/downward and the inflection points of f.
f) Sketch the graph of $y=f(x)$, by using the information you collected above.

Ex 4. (20 points) Among all boxes with a square base and volume $27 \mathrm{~cm}^{3}$, what are the dimensions of the box which minimize the surface area?

Ex 5. (5+5+5+5 points) Which statements are True/False? Justify your answers.
a) We have $\cos \left(\sin ^{-1}(x)\right)=\sqrt{1-x^{2}}$ for all x in $[-1,1]$.
b) If f is a function which is continuous on $[a, b]$, differentiable on (a, b) and such that $f(a)=f(b)$ then f has at least one critical point in (a, b).
c) There exists a function f such that $f(0)=0, f(8)=8$ and $f^{\prime}(x) \geq 16$ for all x in $[0,8]$.
d) If $f^{\prime}(x)=g^{\prime}(x)$ for all x in \mathbb{R}, then $f(x)=g(x)$.

