Calculus I - MAC 2311 - Section 007
 Quiz 1 - Solution
 08/31/2017

1) Find the domain of the following function (justify each step):

$$
\begin{gathered}
f: \mathbb{R} \rightarrow \mathbb{R} \\
f(x)=\frac{x^{3}+2 x}{x^{2}-3 x+2}
\end{gathered}
$$

Solution:

Since $f(x)$ is a rational function, its domain consists of all the real numbers except those for which the denominator equals 0. Hence, the problem boils down to solve the quadratic equation:

$$
x^{2}-3 x+2=0
$$

Its roots are $x_{1}=\frac{3-\sqrt{1}}{2}=1$ and $x_{2}=\frac{3+\sqrt{1}}{2}=2$. These are all the values for which the denominator is 0 . Hence the domain is given by the set $D=\mathbb{R} \backslash\{1,2\}$ - or we can write $D=(-\infty, 1) \cup(1,2) \cup(2, \infty)$.
2) Find the limit (justify each step):
a) $\lim _{x \rightarrow-1} \frac{4 x^{2}+1}{x^{2}}$

Solution:

Since $x=-1$ belongs to the domain of the function $f(x)=\frac{4 x^{2}+1}{x^{2}}$ and a rational function is continuous at each point of its domain, then:

$$
\lim _{x \rightarrow-1} f(x)=f(-1)=\frac{4 \cdot(-1)^{2}+1}{(-1)^{2}}=5
$$

b) $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} & =\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} \cdot \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}= \\
& =\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1^{2}}{x(\sqrt{x+1}+1)}= \\
& =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+1}+1)}= \\
& =\lim _{x \rightarrow 0} \frac{1}{(\sqrt{x+1}+1)}= \\
& =\frac{1}{\lim _{x \rightarrow 0}(\sqrt{x+1}+1)}=\frac{1}{2}
\end{aligned}
$$

c) The graph of a function f is given.

Use it to evaluate the following, when it is possible:
a) $\lim _{x \rightarrow 0^{-}} f(x)=2$
b) $\lim _{x \rightarrow 0^{+}} f(x)=0$
c) $\lim _{x \rightarrow 0} f(x)$ does not exist.

Justify your answer: Because $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$
d) $f(0)=2$

