Calculus I - MAC 2311 - Section 007
 Quiz 2 - Solution
 09/19//2017

1) [3 points] Give the definition of a function $f: \mathbb{R} \mapsto \mathbb{R}$ continuous at a point a in \mathbb{R}.

Solution:

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be continuous at $a \in \mathbb{R}$ if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

2) [3 points] Let $f: \mathbb{R} \mapsto \mathbb{R}$ be a function and a a point such that

$$
\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=L<\infty \text { and } f(a) \neq L
$$

How do we call this kind of discontinuity?

Solution:

It is a removable discontinuity.

Find a function g that agrees with f for all $x \neq a$ and is continuous at a.
Solution:

$$
g= \begin{cases}f(x), & \text { for } x \neq a \\ L, & \text { for } x=a\end{cases}
$$

2) [5 points] For which values of x is the following function continuous? For each discontinuity establish if it is a removable, an infinite or a jump discontinuity.

$$
f(x)=\frac{x-2}{x^{2}-3 x+2}
$$

Solution:

First of all we can write

$$
f(x)=\frac{x-2}{(x-1)(x-2)}
$$

Hence the domain of f is the set $D=\mathbb{R} \backslash\{1,2\}$.
Since $f(x)$ is a rational function, it is continuous at each point of its domain, so that we will just analyze the behavior of f at a neighborhood of $x=1$ and $x=2$. We have:

- $\lim _{x \rightarrow 1^{-}} \frac{x-2}{(x-1)(x-2)}=\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}=" \frac{1}{0^{-}} "=-\infty$ and $\lim _{x \rightarrow 1^{+}} \frac{x-2}{(x-1)(x-2)}=$ $=\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=" \frac{1}{0^{+}} "=\infty$. Hence $x=1$ is an infinite discontinuity.
- $\lim _{x \rightarrow 2^{-}} \frac{x-2}{(x-1)(x-2)}=\lim _{x \rightarrow 2^{-}} \frac{1}{x-1}=1$ and $\lim _{x \rightarrow 2^{+}} \frac{x-2}{(x-1)(x-2)}=\lim _{x \rightarrow 2^{+}} \frac{1}{x-1}=1$. Moreover f is not defined at 2, hence $x=2$ is a removable discontinuity.

