Calculus I - MAC 2311 - Section 007

Quiz 5 - Solutions

10/26/2017

1) [3 points] Without using a calculator compute the following values.
a) $\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)=-\frac{\pi}{4}$
b) $\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$
c) $\tan ^{-1}(\sqrt{3})=\frac{\pi}{3}$
d) $\sin \left(\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$
e) $\tan ^{-1}\left(\sin \left(-\frac{\pi}{2}\right)\right)=\tan ^{-1}(-1)=-\frac{\pi}{4}$
f) $\cos ^{-1}\left(\sqrt{3} \sin \left(\frac{\pi}{6}\right)\right)=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}$
2) $[1+2.5+1.5$ points $]$ Consider the function

$$
f(x)=\tan \left(\sin ^{-1}(2 x)\right)
$$

a) Find the domain of f.

The function f is a composition of the functions \tan and $\sin ^{-1}$ which have respectively domain $\mathbb{R} \backslash\left\{\frac{\pi}{2}+k \pi\right.$, where k is an integer $\}$ and $[-1,1]$. Hence x is in the domain D of f if and only if:

$$
\left\{\begin{array} { l }
{ - \frac { \pi } { 2 } < \operatorname { s i n } ^ { - 1 } (2 x) < \frac { \pi } { 2 } } \\
{ - 1 \leq 2 x \leq 1 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ - 1 < 2 x < 1 } \\
{ - \frac { 1 } { 2 } \leq x \leq \frac { 1 } { 2 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
-\frac{1}{2}<x<\frac{1}{2} \\
-\frac{1}{2} \leq x \leq \frac{1}{2}
\end{array} \Leftrightarrow-\frac{1}{2}<x<\frac{1}{2}\right.\right.\right.
$$

We obtain that $D=\left(-\frac{1}{2}, \frac{1}{2}\right)$.
b) Show that for each x in the domain a simplified expression for f is $\frac{2 x}{\sqrt{1-4 x^{2}}}$.

Let us set $y=\sin ^{-1}(2 x)$. Then $\sin (y)=2 x$ and $-\frac{\pi}{2}<y<\frac{\pi}{2}\left(\right.$ since $\left.x \in\left(-\frac{1}{2}, \frac{1}{2}\right)\right)$.
We recall that in a right triangle $\sin (y)=\frac{\text { opposite leg }}{\text { hypotenuse }}$. Here $\sin (y)=\frac{2 x}{1}$, hence we can consider the right triangle with hypotenuse of length 1 and opposite leg of length $2 x$ (see the picture below):

Hence:

$$
\tan \left(\sin ^{-1}(2 x)\right)=\tan (y)=\frac{\text { opposite leg }}{\text { adjacent leg }}=\frac{2 x}{\sqrt{1-4 x^{2}}}
$$

c) Compute $f^{\prime}(x)$.

Since we have that $f(x)=\tan \left(\sin ^{-1}(2 x)\right)=\frac{2 x}{\sqrt{1-4 x^{2}}}$ for all x in D, we can compute the derivative of f in two different ways.

I method: $f(x)=\tan \left(\sin ^{-1}(2 x)\right)$. Then

$$
\begin{aligned}
f^{\prime}(x) & =\sec ^{2}\left(\sin ^{-1}(2 x)\right) \cdot\left(\sin ^{-1}(2 x)\right)^{\prime}= \\
& =\sec ^{2}\left(\sin ^{-1}(2 x)\right) \cdot \frac{1}{\sqrt{1-(2 x)^{2}}} \cdot(2 x)^{\prime}= \\
& =\sec ^{2}\left(\sin ^{-1}(2 x)\right) \cdot \frac{2}{\sqrt{1-4 x^{2}}}
\end{aligned}
$$

II method: $f(x)=\frac{2 x}{\sqrt{1-4 x^{2}}}$. Then

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(2 x)^{\prime} \cdot \sqrt{1-4 x^{2}}-2 x\left(\sqrt{1-4 x^{2}}\right)^{\prime}}{1-4 x^{2}}= \\
& =\frac{(2 x)^{\prime} \cdot \sqrt{1-4 x^{2}}-2 x\left(\left(1-4 x^{2}\right)^{\frac{1}{2}}\right)^{\prime}}{1-4 x^{2}}= \\
& =\frac{2 \sqrt{1-4 x^{2}}-2 x\left(\frac{1}{2}\left(1-4 x^{2}\right)^{-\frac{1}{2}}(-8 x)\right)}{1-4 x^{2}} \\
& =\frac{2 \sqrt{1-4 x^{2}}+8 x^{2}\left(1-4 x^{2}\right)^{-\frac{1}{2}}}{1-4 x^{2}}
\end{aligned}
$$

3) $[1.5+1.5$ points $]$ Compute the following limits and show all your work:
a) $\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos (x)}$

We have $\lim _{x \rightarrow 0} x^{2}=0$ and $\lim _{x \rightarrow 0} 1-\cos (x)=0$, so that we are faced with the indeterminate form $\frac{0}{0}$. Hence we can apply L'Hospital's Rule:

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos (x)}=\lim _{x \rightarrow 0} \frac{\left(x^{2}\right)^{\prime}}{(1-\cos (x))^{\prime}}=\lim _{x \rightarrow 0} \frac{2 x}{\sin (x)} .
$$

Now we can proceed in two different ways.
I method: We can use the special limit $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$:

$$
\lim _{x \rightarrow 0} \frac{2 x}{\sin (x)}=\lim _{x \rightarrow 0} \frac{2 x}{\sin (x)} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow 0} \frac{2}{\frac{\sin (x)}{x}}=\frac{2}{1}=2 .
$$

II method: We can apply again L'Hospital's Rule:

$$
\lim _{x \rightarrow 0} \frac{2 x}{\sin (x)}=\lim _{x \rightarrow 0} \frac{(2 x)^{\prime}}{(\sin (x))^{\prime}}=\lim _{x \rightarrow 0} \frac{2}{\cos (x)}=\frac{2}{1}=2 .
$$

Therefore

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos (x)}=\mathbf{2}
$$

b) $\lim _{x \rightarrow \infty} x e^{-x}$

We have $\lim _{x \rightarrow \infty} x=\infty$ and $\lim _{x \rightarrow \infty} e^{-x}=0$, so that we are faced with the indeterminate form $\infty \cdot 0$. Hence we rewrite the limit in the following way

$$
\lim _{x \rightarrow \infty} x e^{-x}=\lim _{x \rightarrow \infty} \frac{x}{e^{x}}
$$

Now the indeterminate form is $\frac{\infty}{\infty}$ and we can apply L'Hospital's Rule:

$$
\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{(x)^{\prime}}{\left(e^{x}\right)^{\prime}}=\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0
$$

Therefore

$$
\lim _{x \rightarrow \infty} x e^{-x}=\mathbf{0} .
$$

