Calculus I - MAC 2311 - Section 007

Quiz 6 - Solutions

11/02/2017

1) Compute the following limit:

$$
\lim _{x \rightarrow 0}\left(x^{3}+1\right)^{\frac{1}{x^{2}}}
$$

Solution:

Let us set:

$$
y=\left(x^{3}+1\right)^{\frac{1}{x^{2}}} .
$$

We have:

$$
\lim _{x \rightarrow 0}\left(x^{3}+1\right)^{\frac{1}{x^{2}}}=\lim _{x \rightarrow 0} y=\lim _{x \rightarrow 0} e^{\ln (y)}=e^{\lim _{x \rightarrow 0} \ln (y)}
$$

Thus, all we have to do is to compute $\lim _{x \rightarrow 0} \ln (y)$:

$$
\lim _{x \rightarrow 0} \ln (y)=\lim _{x \rightarrow 0} \ln \left(\left(x^{3}+1\right)^{\frac{1}{x^{2}}}\right)=\lim _{x \rightarrow 0} \frac{1}{x^{2}} \ln \left(x^{3}+1\right)=\lim _{x \rightarrow 0} \frac{\ln \left(x^{3}+1\right)}{x^{2}}
$$

Now we have $\lim _{x \rightarrow 0} \ln \left(x^{3}+1\right)=0$ and $\lim _{x \rightarrow 0} x^{2}=0$, so that we are faced with the indeterminate form $\frac{0}{0}$. Hence we can apply L'Hospital's Rule:

$$
\lim _{x \rightarrow 0} \frac{\ln \left(x^{3}+1\right)}{x^{2}}=\lim _{x \rightarrow 0} \frac{\frac{1}{x^{3}+1}\left(3 x^{2}\right)}{2 x}=\lim _{x \rightarrow 0} \frac{3 x^{2}}{2 x\left(x^{3}+1\right)}=\lim _{x \rightarrow 0} \frac{3 x}{2\left(x^{3}+1\right)}=\frac{0}{2}=0 .
$$

Hence we get $\lim _{x \rightarrow 0} \ln (y)=0$ so that

$$
\lim _{x \rightarrow 0}\left(x^{3}+1\right)^{\frac{1}{x^{2}}}=e^{\lim _{x \rightarrow 0} \ln (y)}=e^{0}=1
$$

2) a) State Fermat's theorem.

Fermat's theorem

Let f be a function of domain D. If f has a local maximum or minimum at c in D and f is differentiable at $c\left(i . e . f^{\prime}(c)\right.$ exists) then $f^{\prime}(c)=0$.
b) Give the definition of a critical point of a function f.

A critical point (or number) of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.
c) Find the absolute maximum and minimum values of the function

$$
f(x)=-2 x^{3}-3 x^{2}+12 x+5
$$

on the closed interval $[-3,3]$.
Organize your solution in the following steps:

- Find the critical numbers of f and their corresponding values.
- Find the values of f at the endpoints of the interval $[-3,3]$.
- Compare the values obtained in step 1 and step 2 and return the absolute maximum and the absolute minimum values of f.

Solution:

Since f is a continuous function and $[-3,3]$ a closed interval, the Extreme Value Theorem guarantees that f attains an absolute maximum value and an absolute minimum value on $[-3,3]$. Let us find them!

- Find the critical numbers of f and their corresponding values.

Since f is a polynomial, it is differentiable on \mathbb{R}. Thus, its critical numbers are all the numbers c such that $f^{\prime}(c)=0$.
Here we have:

$$
f^{\prime}(x)=-6 x^{2}-6 x+12=-6\left(x^{2}+x-2\right)=-6(x+2)(x-1)
$$

Thus $f^{\prime}(x)=0$ if and only if $x=-2$ or $x=1$. The corresponding values at $x=-2$ and $x=1$ are $f(-2)=-15$ and $f(1)=12$.

- Find the values of f at the endpoints of the interval $[-3,3]$.

We have $f(-3)=-4$ and $f(3)=-40$.

- Compare the values obtained in step 1 and step 2 and return the absolute maximum and the absolute minimum values of f.
The absolute maximum value is given by $\max \{-15,12,-4,-40\}=12$ and the absolute minimum value is given by $\min \{-15,12,-4,-40\}=-40$.

