Continuity

Annamaria Iezzi

We recall that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be continuous at $a \in \mathbb{R}$ if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

This means that f is continuous at a if and only if the following three conditions are satisfied:

1) $f(a)$ is defined (i.e. a is in the domain of the function);
2) $\lim _{x \rightarrow a} f(x)$ exists (i.e. $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$ and the limit is finite);
3) $\lim _{x \rightarrow a} f(x)=f(a)$.

If f is not continuous at a we say that f is discontinuous at a.

There exist three kinds of discontinuity:
a is said to be a removable discontinuity if $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L<\infty$ and either a does not belong to the domain of f or $f(a) \neq L$.

a does not belong to the domain

$f(a) \neq L$
a is said to be an infinite discontinuity if $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$.

a is said to be a jump discontinuity if $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$.

Examples.

1) Let us consider the function

$$
f(x)=\frac{3+x}{x^{4}+3 x^{3}} .
$$

Locate its discontinuities and for each of them say if it is a removable, an infinite or a jump discontinuity.

Solution. First of all we can write

$$
f(x)=\frac{3+x}{x^{3}(x+3)}
$$

Hence the domain of f is the set $D=\mathbb{R} \backslash\{-3,0\}$.
Since $f(x)$ is a rational function, it is continuous at each point of its domain, so that we will just analyze the behavior of f at a neighborhood of $x=-3$ and $x=0$. We have:

- $\lim _{x \rightarrow(-3)^{-}} \frac{3+x}{x^{3}(x+3)}=\lim _{x \rightarrow(-3)^{-}} \frac{1}{x^{3}}=-\frac{1}{27}$ and $\lim _{x \rightarrow(-3)^{+}} \frac{3+x}{x^{3}(x+3)}=\lim _{x \rightarrow(-3)^{+}} \frac{1}{x^{3}}=-\frac{1}{27}$. Hence $x=-3$ is a removable discontinuity.
- $\lim _{x \rightarrow 0^{-}} \frac{3+x}{x^{3}(x+3)}=\lim _{x \rightarrow 0^{-}} \frac{1}{x^{3}}=" \frac{1}{0^{-}} "=-\infty$ and $\lim _{x \rightarrow 0^{+}} \frac{3+x}{x^{3}(x+3)}=\lim _{x \rightarrow 0^{+}} \frac{1}{x^{3}}=" \frac{1}{0^{+}} "=\infty$. Hence $x=0$ is an infinite discontinuity.

2) Let us consider the function

$$
f(x)=\left\{\begin{array}{l}
\frac{x-8}{2 x-4}, \quad x<0 \\
\sqrt{1-x}, \quad 0 \leq x \leq 1 \\
x-1, \quad x>1
\end{array}\right.
$$

Locate its discontinuities and for each of them say if it is a removable, an infinite or a jump discontinuity.

Solution. The function f is defined at all $x \in \mathbb{R}$. Since it is a piecewise function we need to analyse the behavior of f at its "junction points" $x=0$ and $x=1$. We have:

- $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x-8}{2 x-4}=\frac{-8}{-4}=2$ and $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \sqrt{1-x}=1$. Hence $x=$ 0 is a jump discontinuity.
- $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sqrt{1-x}=0$ and $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x-1=0$. Hence $\lim _{x \rightarrow 1^{-}} f(x)=$ $=\lim _{x \rightarrow 1^{+}} f(x)=f(1)=0$ so that f is continuous at $x=1$.
In conclusion f is continuous at all $x \in \mathbb{R} \backslash\{0\}$.

Exercices.

1) For which values of x is the following function continuous? For each discontinuity establish if it is a removable, an infinite or a jump discontinuity.

$$
f(x)=\frac{x-2}{x^{2}-3 x+2} .
$$

$x=1$ infinite discontinuity
$x=2$ removable discontinuity
2) For which values of x is the following function continuous? For each discontinuity establish if it is a removable, an infinite or a jump discontinuity.

$$
f(x)=\frac{x}{|x|}
$$

$$
x=0 \text { jump discontinuity }
$$

3) For which values of x is the following function continuous? For each discontinuity establish if it is a removable, an infinite or a jump discontinuity.

$$
f(x)=\left\{\begin{array}{l}
\frac{x^{2}-x}{x^{2}-1}, \quad x \neq 1 \\
1, \quad x=1
\end{array}\right.
$$

$x=-1$ infinite discontinuity
$x=1$ removable discontinuity
4) Determine all values of the real constant a so that the following function is continuous for all $x \in \mathbb{R}$.

$$
f(x)=\left\{\begin{array}{l}
a x^{2}+x, \quad x<2 \\
\frac{x^{2}-2 a^{2}}{x}, \quad x \geq 2
\end{array}\right.
$$

$$
a=0 \text { or } a=-4
$$

