Implicit differentiation

- Step 1: Take the derivative of each side of the equation with respect to x (remembering to treat y as a function of x), and apply the rules of differentiation.
- Step 2: You have now an ordinary linear equation where the unknown you want to solve for is $\frac{d y}{d x}$. Solve it!
- Step 3: Substitute the coordinates of your point in the formula for $\frac{d y}{d x}$ you just obtained. This is the slope of the tangent line to the curve at the given point!
- Step 4: Find an equation of the tangent line, by using the slope and the coordinates of the point.

Related rates problem

- Step 1: Understand the problem - Draw a picture - Find and name the quantities which are related.
- Step 2: Write what you know and what you wish to find!
- Step 3: Find how the quantities are related (i.e. find a suitable equation which relates the quantities).
- Step 4: Differentiate the above equation (so that the related quantities will give you the related rates).
- Step 5: Solve for the unknown quantity and replace the knows data (with unit of measures).

Logarithmic differentiation

You want to differentiate the function $f(x)$ by using logarithmic differentiation:

- Step 1: Set $y=f(x)$.
- Step 2: Take the natural logarithm both sides in the equation $y=f(x)$ and use the Laws of Logarithms to simplify your right-hand expression.
- Step 3: Differentiate both sides implicitly with respect to x.
- Step 4: Solve your resulting equation for $\frac{d y}{d x}$ and, at the end, do not forget that $y=f(x) \ldots$

