
Calculus I - MAC 2311 - Section 003

Homework 2 - Solutions

Ex 1. Differentiate with respect to the indicated variable. If k appears in the function, treat it
as a constant. Before starting computing your derivative, think if it is possible to simplify
the function. Show all your work.
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c)
d

du
[5u tan(u)]

product rule
=

d

du
[5u] · tan(u) + 5u

d

du
[tan(u)] = 5 tan(u) + 5u sec2(u).

d)
d

dx

[
ex + 1

sin(3x)

]
quotient rule

=
d
dx(ex + 1) · sin(3x)− (ex + 1) · ddx(sin(3x))
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=
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.

e)
d

dx

[
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]
= 0, since
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cos (3π)
is a constant.
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d
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]

sum rule
=

d
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=

= ex
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· (− sin(x)) = 2x · ex2+1 − tan(x).
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√
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√
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√
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√
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i)
d

dα

[√
tan(kα2)

]
chain rule 1

=
1

2
√

tan(kα2)
·
(
tan(kα2)

)′ chain rule 2
=

=
1

2
√

tan(kα2)
· sec2(kα2) · (kα2)′ =

sec2(kα2) · 2kα
2
√

tan(kα2)

j)
d

dx

[
eln(sin(x))

]
eln(x)=x

=
d

dx
[sin(x)] = cos(x).

Note that the cancellation equation eln(x) = x is true for all x > 0. Thus, if we want
to be precise, we should point out that the simplification eln(sin(x)) = sin(x) is true

when sin(x) > 0. As a consequence cos(x) is the derivative of eln(sin(x)) for all x such

that sin(x) > 0 (note again that, since the function eln(sin(x)) is not defined when
sin(x) ≤ 0, it is not differentiable at those points).
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k)
d

dt

[
ln
(

(sin(t))3k
)]

ln(xr)=r·ln(x)
=

d

dt
[3k · ln (sin(t))] = 3k · d

dt
[ln (sin(t))] =

= 3k · 1

sin(t)
· cos(t) = 3k cot(t).

l)
d

dx

[
xcos(x)

]
? I method : Logarithmic differentiation

y = xcos(x)

ln(y) = ln
(
xcos(x)

)
= cos(x) · ln(x)

d

dx
[ln(y)] =

d

dx
[cos(x) · ln(x)]

1

y
· dy
dx

= − sin(x) ln(x) +
cos(x)

x

dy

dx
= y ·

(
− sin(x) ln(x) +

cos(x)

x

)
dy

dx
= xcos(x) ·

(
− sin(x) ln(x) +

cos(x)

x

)
.

? II method

By using the identity eln(x) = x, we can rewrite the function in the following
way:

f(x) = xcos(x) = eln(x
cos(x)) = ecos(x) ln(x).

Hence we have:

f ′(x) =
(
ecos(x) ln(x)

)′
=

= ecos(x) ln(x) (cos(x) ln (x))′ =

= ecos(x) ln(x)
(
− sin(x) ln(x) +

cos(x)

x

)
=

= xcos(x)
(
− sin(x) ln(x) +

cos(x)

x

)
.
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Ex 2. At a time t = 0 a calculus student leaves his home and starts walking toward the university
where he has to take his calculus test. At some point he realizes that he has forgotten his
calculator at home...

Assume that the student walks/runs according to the position function:

g(t) = t4 − 4t3 + 4t2,

where t is in minutes and g(t) in yards.

a) Find the velocity of the student as a function
of t.

b) At what time(s) does he stop?
c) Find the acceleration of the student as a func-

tion of t.
d) Find his acceleration at t = 3 min.
e) Here to the right is the graph of the position

function g(t). Is your answer for (b) consistent
with this graph? Why?

t

g(t)

1 2 30

1

2

3

Solution:

a) We have:

v(t) = g′(t) = (t4 − 4t3 + 4t2)′ = 4t3 − 12t2 + 8t.

b) We have to find the time(s) t > 0 at which the velocity is 0, i.e. we have to solve:

v(t) = 0

⇓
4t(t2 − 3t+ 2) = 0

⇓
t(t− 1)(t− 2) = 0

⇓
t = 0 min, or t = 1 min, or t = 2 min.

Since we consider only the positive solutions (t >0), we have that the students stops
at t = 1 min and t = 2 min.

c) We have:

a(t) = v′(t) = (4t3 − 12t2 + 8t)′ = 12t2 − 24t+ 8.

d) We have to compute a(3):

a(3) = 12 · 32 − 24 · 3 + 8 = 108− 72 + 8 = 44 yards/min2

e) Yes, because geometrically the instantaneous velocity of the student at a time t is the
slope of the tangent line to the graph of the position function at the point (t, g(t)).
On the graph we clearly see that the tangent is horizontal at times t = 1 and t = 2.
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Ex 3. (20 points)

x

y

−2 −1 1 2

−1

1

2

1.5 y = g(x)

y = f(x)

Let f and g be the functions whose graphs are shown above and let

h(x) = f(x) + g(x), u(x) = f(x)g(x), v(x) =
f(x)

g(x)
, w(x) = f(g(x)).

Compute h′(1), u′(1), v′(1) and w′(1), without finding explicit formulæ for f(x) and g(x).

Solution:

By using the differentiation rules (respectively sum, product, quotient and chain rule)
we have:

h′(x) = f ′(x) + g′(x);

u′(x) = f ′(x)g(x) + f(x)g′(x);

v′(x) =
f ′(x)g(x)− f(x)g′(x)

(g(x))2
;

w′(x) = f ′(g(x))g′(x).

Hence, in order to compute h′(1), u′(1), v′(1) and w′(1), we need before to find the values
for f(1), g(1), f ′(1), g′(1), f ′(g(1)).

• Easily from the graphs of f and g we get that f(1) = 1.5 and g(1) = −1.

• For computing f ′(1) (respectively g′(1)) we need to find the slope of the tangent line
to the graph y = f(x) (respectively y = g(x)) at the point (1, f(1)) (respectively
(1, g(1))).

In the first case, the graph y = f(x) is a line, which is tangent to itself at each point.
Thus, we can compute its slope by using the coordinates of two of its points, for
example (0, 1) and (2, 2), and we have:

f ′(1) =
2− 1

2− 0
= 0.5.

In the second case, the tangent line to y = g(x) at (1, g(1)) is horizontal (parallel to
the x-axis), so that its slope is 0. This means that

g′(1) = 0.
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• Finally we have:

f ′(g(1)) = f ′(−1) =
2− 1

−1− 0
= −1,

where f ′(−1) is computed as the slope of the line passing through the points (−1, 2)
and (0, 1).

We are now ready for computing h′(1), u′(1), v′(1) and w′(1):

h′(1) = f ′(1) + g′(1) = 0.5 + 0 = 1;

u′(1) = f ′(1)g(1) + f(1)g′(1) = 0.5 · (−1) + 1.5 · 0 = −0.5;

v′(1) =
f ′(1)g(1)− f(1)g′(1)

(g(1))2
=

0.5 · (−1)− 1.5 · 0
(−1)2

=
−0.5

1
= −0.5;

w′(1) = f ′(g(1))g′(1) = −1 · 0 = 0.

Ex 4. The ideal gas law relates the temperature, pressure, and volume of an ideal gas. Given n
moles of gas, the pressure P (in kPa), volume V (in liters), and temperature T (in kelvin)
are related by the equation

PV = nRT,

where R is the molar gas constant (R ∼= 8.314kPa· liters
kelvin ). Assume that the pressure, the

volume and the temperature of the gas depend all on time.

a) Suppose that one mole of ideal gas is held in a closed container with a volume of 25
liters. If the temperature of the gas is increasing at a rate of 3.5 kelvin/min, how
quickly will the pressure increase?

b) Suppose instead that the temperature of the gas is held fixed at 300 kelvin, while the
volume decreases at a rate of 2.0 liters/min. How quickly is the pressure of the gas
increasing at the instant that the volume is 20 liters?

Solution:

For both parts (a) and (b) we can define the following variables:

At a given time t:

• P (t): the pressure of the gas (kPa);

• V (t): the volume of the gas (L);

• T (t): the temperature of the gas (K).

These variables are related by the ideal gas law:

P (t)V (t) = nRT (t),

where n is number of moles of gas and R = 8.314kPa·L
K .

In order to find how the corresponding rates are related, we differentiate the previous
equation both sides:
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d

dt
(P (t)V (t)) =

d

dt
(nRT (t))

⇓ product rule

dP

dt
· V (t) + P (t) · dV

dt
= nR · dT

dt

At this point the situations described in (a) and in (b) are different and will be analyzed
separately.

a) • Known:

◦ V (t) = 25 L for all t (the volume is constant) ⇒ dV

dt
= 0;

◦ dT

dt
= 3.5 K

min for all t.

◦ n = 1; R = 8.314kPa·L
K .

• Unknown:
dP

dt
.

By replacing the known data in

dP

dt
· V (t) + P (t) · dV

dt
= nR · dT

dt

we obtain:

dP

dt
· 25 + P (t) · 0 = 1 · 8.314 · 3.5

⇓
dP

dt
=

8.314 · 3.5
25

= 1.16396
kPa

min

b) • Known:

◦ T (t) = 300 K for all t (the temperature is constant) ⇒ dT

dt
= 0;

◦ dV

dt
= −2 L

min for all t.

◦ there is a time t0 such that V (t0) = 20 L;

◦ n = 1; R = 8.314kPa·L
K .

• Unknown:
dP

dt

∣∣∣
t=t0

.

By evaluating at t = t0 the equation

dP

dt
· V (t) + P (t) · dV

dt
= nR · dT

dt

we obtain:
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dP

dt

∣∣∣
t=t0
· V (t0) + P (t0) ·

dV

dt

∣∣∣
t=t0

= nR · dT
dt

∣∣∣
t=t0

⇓
dP

dt

∣∣∣
t=t0
· 20 + P (t0) · (−2) = nR · 0

⇓
dP

dt

∣∣∣
t=t0

=
2P (t0)

20

In order to find P (t0) we use the ideal gas law:

P (t0)V (t0) = nRT (t0)

⇓

P (t0) =
nRT (t0)

V (t0)
=

1 · 8.314 · 300

20
= 124.71 kPa

In conclusion we have:

dP

dt

∣∣∣
t=t0

=
2P (t0)

20
=

2 · 124.71

20
= 12.471

kPa

min
.

Ex 5. Which statements are True/False? Justify your answers.

a) If f(x) is a polynomial of degree n then f (n+1)(x) = 0.

True. If f(x) is a polynomial of degree n, then f ′(x) is a polynomial of degree n− 1,

f ′′(x) is a polynomial of degree n − 2,. . . , f (n)(x) is a polynomial of degree 0, i.e.

f (n)(x) is a constant. Therefore f (n+1)(x) =
(
f (n)(x)

)′
= 0.

b) Let F (t) be a physical quantity depending on time. If
dF

dt
is constant for each time t,

then F is constant.

False. If F (t) = t, then F is a non constant function with
dF

dt
= 1 for all t.

c) Let h(x) = g(f(x)). If f ′(0) = 1 and g′(0) = 0, then h′(0) = 0.

False. In order to show that the statement is false, we have to provide a coun-
terexample, i.e. an example of two functions f(x) and g(x) such that f ′(0) = 1 and
g′(0) = 0, but h′(0) 6= 0.

Let us consider f(x) = x + 1 and g(x) = x2. We have f ′(x) = 1 and g′(x) = 2x,
therefore f ′(0) = 1 and g′(0) = 0. Now h(x) = g(f(x)) = (x+ 1)2, so h′(x) = 2(x+ 1)
and h′(0) = 2(0 + 1) = 2 6= 0.

d) We have ln(3e2)− ln(3
√
e) = 3

2 .

True. Indeed we have:

ln(3e2)− ln(3
√
e) = ln

(
3e2

3
√
e

)
= ln

(
e2

e
1
2

)
= ln

(
e2−

1
2

)
= ln

(
e

3
2

)
=

3

2


