Calculus I - MAC 2311 - Section 003

Quiz 2 - Solutions

09/05/2018

1) [7.5 points] Compute the following limits. Show all your work and state any special limits used.
a) $\lim _{x \rightarrow 4} \frac{x^{2}-5 x+4}{x^{2}-2 x-8} \stackrel{\text { plug in }}{=} \frac{(4)^{2}-5 \cdot 4+4}{(4)^{2}-2 \cdot 4-8}=\frac{16-20+4}{16-8-8}=" \frac{0}{0}$ ".

Hence we need more work for computing the limit:

$$
\lim _{x \rightarrow 4} \frac{x^{2}-5 x+4}{x^{2}-2 x-8}=\lim _{x \rightarrow 4} \frac{(x-4)(x-1)}{(x-4)(x+2)}=\lim _{x \rightarrow 4} \frac{x-1}{x+2} \stackrel{\operatorname{plug} \text { in }}{=} \frac{4-1}{4+2}=\frac{3}{6}=\frac{\mathbf{1}}{\mathbf{2}}
$$

b) $\lim _{t \rightarrow 1} \frac{1-t^{2}}{\sqrt{t}-1} \stackrel{\text { plug in }}{=} \frac{1-(1)^{2}}{\sqrt{1}-1}=" \frac{0}{0}$ ".

Hence we need more work for computing the limit:

$$
\begin{aligned}
\lim _{t \rightarrow 1} \frac{1-t^{2}}{\sqrt{t}-1} & =\lim _{t \rightarrow 1} \frac{1-t^{2}}{\sqrt{t}-1} \cdot \frac{\sqrt{t}+1}{\sqrt{t}+1}= \\
& =\lim _{t \rightarrow 1} \frac{\left(1-t^{2}\right)(\sqrt{t}+1)}{(\sqrt{t})^{2}-1}= \\
& =\lim _{t \rightarrow 1} \frac{(1-t)(1+t)(\sqrt{t}+1)}{t-1}= \\
& =\lim _{t \rightarrow 1} \frac{-(t-1)(1+t)(\sqrt{t}+1)}{t-1}= \\
& =\lim _{t \rightarrow 1} \frac{-(1+t)(\sqrt{t}+1)}{1} \stackrel{\text { plug in }}{\underline{-2}} \frac{2}{1}=-4
\end{aligned}
$$

c) $\lim _{\theta \rightarrow 0} \frac{\sin (5 \theta)}{10 \theta} \stackrel{\operatorname{plug}}{=}$ in $\frac{\sin (5 \cdot 0)}{10 \cdot 0}=" \frac{0}{0}$ ".

Hence we need more work for computing the limit:

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \frac{\sin (5 \theta)}{10 \theta} & =\lim _{\theta \rightarrow 0} \frac{1}{2} \cdot \frac{\sin (5 \theta)}{5 \theta}= \\
& =\frac{1}{2} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (5 \theta)}{5 \theta} \stackrel{\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1}{=} \frac{1}{2} \cdot 1=\frac{\mathbf{1}}{\mathbf{2}}
\end{aligned}
$$

2) [2.5 points] State the Squeeze theorem.

Let f, g, h be functions defined near a (except possibly at a). Suppose that:

1) $g(x) \leq f(x) \leq h(x)$ for all x near a (except possibly at a);
2) $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L$.

Then:

$$
\lim _{x \rightarrow a} f(x)=L
$$

3) [1 point] Let $f(x)$ be a function such that $-1 \leq f(x) \leq x^{2}-2 x$, for all x. Compute $\lim _{x \rightarrow 1} f(x)$.

Solution

Let $g(x)=-1$ and $h(x)=x^{2}-2 x$. We have:

1) $g(x) \leq f(x) \leq h(x)$, for all x (so, in particular near 1);
2) $\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} h(x)=-1$..

Then, by the Squeeze Theorem, we get $\lim _{x \rightarrow 1} f(x)=-1$

