Calculus I - MAC 2311 - Section 003

Quiz 5 - Solutions

10/24/2018

1) a) [1.5 points] Give the definition of a critical number of a function f.

A critical number of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.
b) $[1.5$ points $]$ State the Mean Value Theorem.

Let f be a function which is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). Then there exists c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

2) [4 points] Find the absolute maximum and minimum values of the function

$$
f(x)=e^{x^{3}-3 x}
$$

on the closed interval $[0,2]$.

Solution:

Since f is a continuous function on the closed interval [0,2], the Extreme Value Theorem guarantees that f attains an absolute maximum value and an absolute minimum value on $[0,2]$. Let us find them!

- Compute the values of f at the endpoints of the interval $[0,2]$.

We have $f(0)=e^{0}=1$ and $f(2)=e^{8-6}=e^{2} \sim 7.39$.

- Find the critical numbers of f in $(0,2)$ and their corresponding values.

Since f is differentiable everywhere, its critical numbers in $(0,2)$ are all the numbers c in $(0,2)$ such that $f^{\prime}(c)=0$.
Here we have:

$$
f^{\prime}(x)=\left(e^{x^{3}-3 x}\right)^{\prime}=e^{x^{3}-3 x} \cdot\left(3 x^{2}-3\right)=e^{x^{3}-3 x} \cdot 3\left(x^{2}-1\right)=e^{x^{3}-3 x} \cdot 3(x-1)(x+1) .
$$

Thus $f^{\prime}(x)=0$ if and only if $x=-1$ or $x=1$ (note that $e^{x^{3}-3 x} \neq 0$ for all x). Now, only 1 is inside the interval $(0,2)$ and the corresponding value is $f(1)=e^{1-3}=e^{-2} \sim 0.14$.

- Compare the values obtained in step 1 and step 2 and return the absolute maximum and the absolute minimum values of f.
We have $f(1)=e^{-2}<f(0)=1<f(2)=e^{2}$, so the absolute maximum value of f on $[0,2]$ is e^{2} and the absolute minimum value of f on $[0,2]$ is e^{-2}.

3) [4 points] Let f be a differentiable function such that $f^{\prime}(x) \leq-1$ for all x in \mathbb{R}. If $f(0)=-2$, what is the lowest value that f may attain at -2 ?

Solution:

We consider the function f on the closed interval $[-2,0]$. Since f is a function which is differentiable everywhere, we have in particular that f is continuous on $[-2,0]$ and
differentiable on $(-2,0)$. Thus, by the Mean Value Theorem, there exists c in $(-2,0)$ such that

$$
f^{\prime}(c)=\frac{f(0)-f(-2)}{0-(-2)} \stackrel{f(0)=-2}{=} \frac{-2-f(-2)}{2} .
$$

By hypothesis $f^{\prime}(c) \leq-1$. Therefore we have:

$$
\frac{-2-f(-2)}{2} \leq-1 \Leftrightarrow-2-f(-2) \leq-2 \Leftrightarrow f(-2) \geq 0 .
$$

In conclusion, the lowest value that f may attain at -2 is 0 .
4) Is the following statement true or false? Justify fully your answer.

Let f be a continuous function. If f has a local minimum at $x=2$, then $f^{\prime}(2)=0$.

FALSE

By the Generalized Fermat's Theorem, if f has a local minimum at $x=-2$, then $x=-2$ is a critical number, i.e. either $f^{\prime}(2)=0$ or $f^{\prime}(2)$ does not exist. Then a counterexample to our statement would be a function which has a local minimum at $x=-2$ but is not differentiable at $x=-2$.

If we consider $f(x)=|x+2|$, we have that f is continuous at $x=-2$, but not differentiable at $x=-2$, and $f^{\prime}(x)<0$ on $(-\infty,-2)$ and $f^{\prime}(x)>0$ on $(-2, \infty)$. This implies that f has a local minimum at $x=-2$ and $f^{\prime}(-2)$ is not defined.

