Calculus I - MAC 2311 - Section 003

Quiz 7 - Solutions

11/14/2018

Instructions: The total number of points of this quiz is 11 , but your grade will be the minimum between your score and 10 . You will get an extra point if you solve correctly the last exercise. Calculators are not allowed for this quiz.

1) Showing all your work, simplify the expression $\cos \left(\tan ^{-1}\left(\frac{x}{3}\right)\right)$.

Solution:

Let us set $y=\tan ^{-1}\left(\frac{x}{3}\right)$. Then $\tan (y)=\frac{x}{3}$ with $-\frac{\pi}{2}<y<\frac{\pi}{2}$.
We recall that in a right triangle $\tan (y)=\frac{\text { opposite leg }}{\text { adjacent leg. Here } \tan (y)=\frac{x}{3} \text {, hence we can }}$ consider the right triangle with opposite leg of length x and adjacent leg of length 3 (see the picture below):

Then:

$$
\cos \left(\tan ^{-1}\left(\frac{x}{3}\right)\right)=\cos (y)=\frac{\text { adjacent leg }}{\text { hypothenuse }}=\frac{3}{\sqrt{9+x^{2}}}
$$

2) Compute the derivatives of the following functions:
a) $f(x)=(3 x+1) \cdot \arctan \left(x^{3}\right)$.

Solution:

Let $f(x)=(3 x+1) \cdot \arctan \left(x^{3}\right)$. We have:

$$
\begin{aligned}
f^{\prime}(x) & =\left((3 x+1) \cdot \arctan \left(x^{3}\right)\right)^{\prime}= \\
& =(3 x+1)^{\prime} \cdot \arctan \left(x^{3}\right)+(3 x+1) \cdot\left(\arctan \left(x^{3}\right)\right)^{\prime}= \\
& =3 \arctan \left(x^{3}\right)+(3 x+1) \cdot \frac{1}{1+x^{6}} \cdot\left(x^{3}\right)^{\prime}= \\
& =3 \arctan \left(x^{3}\right)+(3 x+1) \cdot \frac{1}{1+x^{6}} \cdot 3 x^{2}= \\
& =3 \arctan \left(x^{3}\right)+\frac{9 x^{3}+3 x^{2}}{1+x^{6}} .
\end{aligned}
$$

b) $g(t)=\frac{\ln (2 t)}{\arccos (t)}$

Solution:
Let $g(t)=\frac{\ln (2 t)}{\arccos (t)}$. We have:

$$
\begin{aligned}
g^{\prime}(t) & =\left(\frac{\ln (2 t)}{\arccos (t)}\right)^{\prime}= \\
& =\frac{(\ln (2 t))^{\prime} \cdot \arccos (t)-\ln (2 t) \cdot(\arccos (t))^{\prime}}{(\arccos (t))^{2}}= \\
& =\frac{\frac{2}{2 t} \cdot \arccos (t)-\ln (2 t) \cdot\left(-\frac{1}{\sqrt{1-t^{2}}}\right)}{(\arccos (t))^{2}}= \\
& =\frac{\frac{\arccos (t)}{t}+\frac{\ln (2 t)}{\sqrt{1-t^{2}}}}{(\arccos (t))^{2}} .
\end{aligned}
$$

3) Prove that $\frac{d}{d x}[\arccos (x)]=-\frac{1}{\sqrt{1-x^{2}}}$.

Solution:

We set $y=\arccos (x)$. Then $\cos y=x$ with $0 \leq y \leq \pi$. We want to prove that $\frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}}$. We have:

$$
\begin{aligned}
& \frac{d}{d x}(\cos y)=\frac{d}{d x}(x) \\
& \Downarrow \\
&-\sin y \cdot \frac{d y}{d x}=1 \\
& \Downarrow \\
& \frac{d y}{d x}=-\frac{1}{\sin y}
\end{aligned}
$$

Now, from the Pythagorean identity $\cos ^{2}(y)+\sin ^{2}(y)=1$, we obtain:

$$
\begin{aligned}
& \sin ^{2}(y)=1-\cos ^{2}(y) \\
& \Downarrow \sin y \geq 0 \text { when } y \in[0, \pi] \\
& \sin y=\sqrt{1-\cos ^{2}(y)} \\
& \Downarrow \cos y=x \\
& \sin y=\sqrt{1-x^{2}},
\end{aligned}
$$

and therefore $\frac{d y}{d x}=-\frac{1}{\sin y}=-\frac{1}{\sqrt{1-x^{2}}}$.
4) Compute $\arcsin (\sin (\pi))$ and show all your work.

Solution:

We have:

$$
\arcsin (\sin (\pi)) \stackrel{\sin (\pi)=0}{=} \arcsin (0)=0 .
$$

Note that, since $\pi \notin\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$, we can not apply the cancellation equation $\arcsin (\sin (x))=x$, for all $x \in\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$.

