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Quiz 8 - Solutions
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Compute the following limits:

1) lim —c?s(x) —<
z—0 sin(x) + 2z

Solution:

We have lim, g cos(z) —e* = cos(0) —e =1 -1 =0 and lim,_¢ = sin(0) +2-0 = 0, so
we are faced with the indeterminate form 8. Hence we can apply L’Hospital’s Rule:
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Tr—>00
Solution:

We have limg_o 2° = 00 and limy_, o e = 0, so that we are faced with the indeter-

minate form oo -0. Hence we rewrite the limit in the following way:
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Now the indeterminate form is 2> and we can apply L’Hospital’s Rule:
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Again, we are faced with the indeterminate form 22, therefore we apply a second time
L’Hospital’s Rule:
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3) lim (e + x)%

z—>0%

Solution:

We have lim,_o+ ¢ + z = 1 and lim,_g+ % = 00, so that we are faced with the indeter-
minate form 1°°. Hence we rewrite the limit in the following way:
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Now we compute separately limg o+ % ‘In(e” + x):
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Therefore we have:
1ir61+(ex + x)% = elimw_)0+ iln(em_HC) = e2.
4) A student writes:
x T + 1 / x
lim S g DT g
=0t z—0* (x)’ z—0* 1

Do you agree or disagree with the student? Justify your answer. Moreover, if you
disagree compute the correct value of the limit.

Solution:

[

The student can not apply L’Hospital’s rule, since the limit is not of the form g or 2.
One can instead solve the limit directly and get:
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