Calculus I - MAC 2311 - Section 003

Review session Final Exam 11/29/2018

Ex 1. Compute the following (definite or indefinite) integrals:

a)
$$\int 3\sin(x) + \frac{4}{1+x^2} + 2 \, dx$$

b) $\int (t+3)(2-t^2) + \frac{\sqrt{t}+t}{t^2} \, dt$
c) $\int_{-\pi}^{\frac{\pi}{2}} 3\sin(x) - 8\cos(x) \, dx$
d) $\int_{1}^{0} -2e^u + \frac{1}{1+u^2} \, du$

- **Ex 3.** A ball is thrown upward at a speed of 48 feet per second from the edge of a cliff 288 feet above the ground.
 - a) Find its height above ground t seconds later.
 - b) When does it reach its maximum height?
 - c) When does it hit the ground?

a)
$$\lim_{x \to -\infty} f(x) = 2;$$

b) $f''(x) > 0$ for all $-3 < x < 1;$
c) $f'(-1) = 0;$
d) $f(2) = 1;$
e) $\int_{2}^{x} f(t) dt \ge 1$ for all $x > 3.$

Make sure that your graph is the graph of a function, i.e. it passes the vertical line test.

- **Ex 5.** At noon ship A is 100 km west of ship B. Ship A is sailing south at 35 km/h and ship B is sailing north at 25 km/h. How fast is the distance between the ships changing at 4:00 pm.
- Ex 6. Compute the derivative of the following functions:
 - a) $f(t) = \sqrt{1 + t \arccos(t)}$ $e^{\tan(x)} + 1$

b)
$$f(x) = \frac{1}{\cos(x)}$$

c) $f(s) = \arctan(\sqrt{s}) \cdot \ln(2s)$

d) $g(x) = \int_{-1}^{x} e^{t} \cdot (t^2 - 3t + 2)dt$

What are the critical numbers of g(x)?

e)
$$g(t) = \int_0^{t^2} \frac{x-1}{x^2+1} dx$$

What are the critical numbers of g(t)?

Ex 7. Consider the function f(x) = (1+x)(3-x) whose graph on the interval [-1,3] is sketched below. Let S be the region between the curve y = f(x), the x-axis and the lines x = -1 and x = 3.

- a) Draw in the picture above the rectangles associate to the right Riemann sum with n = 4.
- b) Approximate the area of S with the right Riemann sum with n = 4.
- c) Express the area of S as a definite integral.
- d) Compute the exact value of the area of S.
- e) Was your approximation an underestimate or an overestimate?

Ex 8. Compute the following limits:

a)
$$\lim_{t \to 1} \frac{\ln(1 + \ln(t))}{t^2 - 1}$$

b)
$$\lim_{x \to 3} \frac{\sin(\frac{\pi}{2}x)}{\cos(\pi x)}$$

c)
$$\lim_{x \to 0} \frac{e^{x^2} - 1}{3x^2}$$

d)
$$\lim_{x \to \infty} \int_1^x \frac{1}{1 + t^2} + \frac{1}{t^2} dt$$

Ex 9. Let $f(x) = \cos\left(\tan^{-1}\left(\frac{1}{e^x}\right)\right)$. Simplify the expression of f and compute f(0).

- **Ex 10.** A piece of wire 10 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. How should the wire be cut so that the total area enclosed is as small as possible?
- **Ex.11** A particle is moving with acceleration given by the function $a(t) = 12t^2 + 2\sin(t)$ (measured in meters per second squared).
 - a) Find the position function of the particle if its initial velocity is 5 meters per second and the position at $t = \pi$ is π^4 meters.
 - b) Find the position function of the particle if its initial position is 2 meters and its position at $t = \frac{\pi}{2}$ is 0 meters.