Calculus I - MAC 2311 - Section 003

Review session Final Exam

11/29/2018

Ex 1. Compute the following (definite or indefinite) integrals:
a) $\int 3 \sin (x)+\frac{4}{1+x^{2}}+2 d x$
b) $\int(t+3)\left(2-t^{2}\right)+\frac{\sqrt{t}+t}{t^{2}} d t$
c) $\int_{-\pi}^{\frac{\pi}{2}} 3 \sin (x)-8 \cos (x) d x$
d) $\int_{1}^{0}-2 e^{u}+\frac{1}{1+u^{2}} d u$

Ex 2. Let f be the function whose graph is the following:

a) Compute $\int_{-7}^{7} f(x) d x$.
b) Compute $\int_{-7}^{0} 3 f(x) d x+\int_{0}^{5} f(x)+\sqrt{25-x^{2}} d x-\int_{7}^{5} 2 f(x)+2 x d x$.

Ex 3. A ball is thrown upward at a speed of 48 feet per second from the edge of a cliff 288 feet above the ground.
a) Find its height above ground t seconds later.
b) When does it reach its maximum height?
c) When does it hit the ground?

Ex 4. Sketch the graph of a function f that satisfies all of the given conditions:
a) $\lim _{x \rightarrow-\infty} f(x)=2$;
b) $f^{\prime \prime}(x)>0$ for all $-3<x<1$;
c) $f^{\prime}(-1)=0$;
d) $f(2)=1$;
e) $\int_{2}^{x} f(t) d t \geq 1$ for all $x>3$.

Make sure that your graph is the graph of a function, i.e. it passes the vertical line test.

Ex 5. At noon ship A is 100 km west of ship B. Ship A is sailing south at $35 \mathrm{~km} / \mathrm{h}$ and ship B is sailing north at $25 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing at 4:00 pm.

Ex 6. Compute the derivative of the following functions:
a) $f(t)=\sqrt{1+t \arccos (t)}$
b) $f(x)=\frac{e^{\tan (x)}+1}{\cos (x)}$
c) $f(s)=\arctan (\sqrt{s}) \cdot \ln (2 s)$
d) $g(x)=\int_{-1}^{x} e^{t} \cdot\left(t^{2}-3 t+2\right) d t$

What are the critical numbers of $g(x)$?
e) $g(t)=\int_{0}^{t^{2}} \frac{x-1}{x^{2}+1} d x$

What are the critical numbers of $g(t)$?

Ex 7. Consider the function $f(x)=(1+x)(3-x)$ whose graph on the interval $[-1,3]$ is sketched below. Let S be the region between the curve $y=f(x)$, the x-axis and the lines $x=-1$ and $x=3$.

a) Draw in the picture above the rectangles associate to the right Riemann sum with $n=4$.
b) Approximate the area of S with the right Riemann sum with $n=4$.
c) Express the area of S as a definite integral.
d) Compute the exact value of the area of S.
e) Was your approximation an underestimate or an overestimate?

Ex 8. Compute the following limits:
a) $\lim _{t \rightarrow 1} \frac{\ln (1+\ln (t))}{t^{2}-1}$
b) $\lim _{x \rightarrow 3} \frac{\sin \left(\frac{\pi}{2} x\right)}{\cos (\pi x)}$
c) $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{3 x^{2}}$
d) $\lim _{x \rightarrow \infty} \int_{1}^{x} \frac{1}{1+t^{2}}+\frac{1}{t^{2}} d t$

Ex 9. Let $f(x)=\cos \left(\tan ^{-1}\left(\frac{1}{e^{x}}\right)\right)$. Simplify the expression of f and compute $f(0)$.

Ex 10. A piece of wire 10 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. How should the wire be cut so that the total area enclosed is as small as possible?

Ex. 11 A particle is moving with acceleration given by the function $a(t)=12 t^{2}+2 \sin (t)$ (measured in meters per second squared).
a) Find the position function of the particle if its initial velocity is 5 meters per second and the position at $t=\pi$ is π^{4} meters.
b) Find the position function of the particle if its initial position is 2 meters and its position at $t=\frac{\pi}{2}$ is 0 meters.

