Definitions and Theorems - Test 1

Continuity

A function is continuous at a number a if $\lim _{x \rightarrow a} f(x)=f(a)$.

Derivative of a Function

Let $f(x)$ be a function. The derivative of f is the function $f^{\prime}(x)$ defined as:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Squeeze Theorem

Let f, g, h be functions defined near a (except possibly at a). Suppose that:

1) $g(x) \leq f(x) \leq h(x)$ for all x near a (except possibly at a);
2) $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L$.

Then

$$
\lim _{x \rightarrow a} f(x)=L
$$

Intermediate Value Theorem

Let f be a continuous function on a closed interval $[a, b]$, with $f(a) \neq f(b)$. Let N be any number between $f(a)$ and $f(b)$.

Then there exists c in (a, b) such that $f(c)=N$.

