Calculus I - MAC 2311-Section 001

Homework 1 - Solutions

Ex 1. (24 points) Compute the following limits and show all your work:
a) $\lim _{x \rightarrow-\sqrt{2}} \frac{x^{2}}{x+1} \stackrel{\operatorname{plug}}{=}$ in $\frac{(-\sqrt{2})^{2}}{-\sqrt{2}+1}=\frac{2}{1-\sqrt{2}} \cdot \frac{1+\sqrt{2}}{1+\sqrt{2}}=\frac{2+2 \sqrt{2}}{1-2}=-2-2 \sqrt{2}$.
b) $\lim _{t \rightarrow-1} \frac{t^{2}-1}{t^{2}+7 t+6}=\lim _{t \rightarrow-1} \frac{(t+1)(t-1)}{(t+1)(t+6)}=\lim _{t \rightarrow-1} \frac{t-1}{t+6} \stackrel{\operatorname{plug}}{=}$ in $\frac{-1-1}{-1+6}=-\frac{2}{5}$.
c) $\lim _{x \rightarrow 1} \frac{-\sqrt{x}+1}{2 x-2}=\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{2 x-2} \cdot \frac{1+\sqrt{x}}{1+\sqrt{x}}=\lim _{x \rightarrow 1} \frac{1-x}{2(x-1)(1+\sqrt{x})}=$ $=\lim _{x \rightarrow 1} \frac{-(x-1)}{2(x-1)(1+\sqrt{x})}=\lim _{x \rightarrow 1} \frac{-1}{2(1+\sqrt{x})}=-\frac{1}{4}$.
d) $\lim _{x \rightarrow \infty} \frac{2017 x^{2017}+2017}{2018 x^{2018}+2018}=\lim _{x \rightarrow \infty} \frac{x^{2017}\left(2017+\frac{2017}{x^{2017}}\right)}{x^{2018}\left(2018+\frac{2018}{x^{2018}}\right)}=\lim _{x \rightarrow \infty} \frac{2017+\frac{2017}{x^{2017}}}{x\left(2018+\frac{2018}{x^{2018}}\right)}=$ $=" \frac{2017+\frac{2017}{\infty}}{\infty \cdot\left(2018+\frac{2018}{\infty}\right)} "=" \frac{2017+0}{\infty \cdot(2018+0)} "=" \frac{2017}{\infty} "=0$.
e) $\lim _{x \rightarrow-\infty} \frac{-3 x^{3}+8 x-1}{2 x^{3}-x^{2}+4}=\lim _{x \rightarrow-\infty} \frac{x^{3}\left(-3+\frac{8}{x^{2}}-\frac{1}{x^{3}}\right)}{x^{3}\left(2-\frac{1}{x}+\frac{4}{x^{3}}\right)}=\lim _{x \rightarrow-\infty} \frac{-3+\frac{8}{x^{2}}-\frac{1}{x^{3}}}{2-\frac{1}{x}+\frac{4}{x^{3}}}=$ $=" \frac{-3+\frac{8}{\infty}-\frac{1}{-\infty}}{2-\frac{1}{-\infty}+\frac{4}{-\infty}} "=\frac{-3+0-0}{2-0+0}=-\frac{3}{2}$.
f) $\lim _{u \rightarrow-\infty} \frac{u^{2}+u+1}{-u+1}=\lim _{u \rightarrow-\infty} \frac{u^{2}\left(1+\frac{1}{u}+\frac{1}{u^{2}}\right)}{u\left(-1+\frac{1}{u}\right)}=\lim _{u \rightarrow-\infty} \frac{u\left(1+\frac{1}{u}+\frac{1}{u^{2}}\right)}{-1+\frac{1}{u}}=$ $=" \frac{-\infty(1+0+0)}{-1+0} "=" \frac{-\infty \cdot 1}{-1} "=" \frac{-\infty}{-1} "=\infty$.
g) $\lim _{\alpha \rightarrow 0} \frac{\sin (8 \alpha)}{2 \alpha}=\lim _{\alpha \rightarrow 0} \frac{\sin (8 \alpha)}{2 \alpha} \cdot \frac{4}{4}=\lim _{\alpha \rightarrow 0} 4 \cdot \frac{\sin (8 \alpha)}{8 \alpha}=4 \cdot \lim _{\alpha \rightarrow 0} \frac{\sin (8 \alpha)}{8 \alpha} \stackrel{\lim _{x \rightarrow 0} \stackrel{\sin x}{x}=1}{=} 4 \cdot 1=4$.
h) $\lim _{x \rightarrow \frac{\pi}{2}-} \frac{\sin x}{\cos x} \stackrel{\text { plug in }}{=}$ " $\frac{1}{0}$ ".

This means the result of the limit will be ∞ or $-\infty$ and the sign will depend on the sing of the denominator. In this case, we have that when x is approaching $\frac{\pi}{2}$ from the left (i.e. $x<\frac{\pi}{2}$) then $\cos x>0$ (in order to convince yourself think about the unit circle or to the graph of the function cosine...). Thus:
$\lim _{x \rightarrow \frac{\pi}{2}-} \frac{\sin x}{\cos x}=" \frac{1}{0^{+}} "=\infty$.

You could also remark that $\frac{\sin x}{\cos x}=\tan x$ and, by using the graph of the tangent, get to the same conclusion that $\lim _{x \rightarrow \frac{\pi}{2}-\frac{\sin x}{\cos x}}=\lim _{x \rightarrow \frac{\pi}{2}-} \tan x=\infty$.

i) $\lim _{x \rightarrow 0} \frac{x-1}{x} \stackrel{\text { plug in }}{=}$ " $\frac{1}{0}$ ".

We will solve this limit by computing separately the left-hand and the right-hand limits:
$\lim _{x \rightarrow 0^{-}} \frac{x-1}{x}=" \frac{0-1}{0^{-}} "=" \frac{-1}{0^{-}} "="-1 \cdot \frac{1}{0^{-}} "="-1 \cdot(-\infty) "=\infty$.
$\lim _{x \rightarrow 0^{+}} \frac{x-1}{x}=" \frac{0-1}{0^{+}} "=" \frac{-1}{0^{+}} "="-1 \cdot \frac{1}{0^{+}} "="-1 \cdot \infty "=-\infty$.
Since $\lim _{x \rightarrow 0^{-}} \frac{x-1}{x} \neq \lim _{x \rightarrow 0^{+}} \frac{x-1}{x}$ then $\lim _{x \rightarrow 0} \frac{x-1}{x}$ does not exist.
j) $\lim _{x \rightarrow \infty} \frac{1}{x+\sqrt{3+x}}=" \frac{1}{\infty+\sqrt{3+\infty}} "=" \frac{1}{\infty+\sqrt{\infty}} "=" \frac{1}{\infty+\infty} "=" \frac{1}{\infty} "=0$.
k) $\lim _{x \rightarrow 1} f(x)$, where $f(x)= \begin{cases}x^{3}-5 x+7, & \text { when } x \leq 1 \\ \sqrt{x+3}+1 & \text { when } x>1\end{cases}$

Since we have to compute the limit of a piecewise function at its "breaking point", we have first to compute separately the left-hand and the right-hand limits:
$\lim _{x \rightarrow 1^{-}} f(x) \stackrel{x \leq 1}{=} \lim _{x \rightarrow 1^{-}} x^{3}-5 x+7 \stackrel{\text { plug in }}{=} 1-5+7=3$.
$\lim _{x \rightarrow 1^{+}} f(x) \stackrel{x \geq 1}{=} \lim _{x \rightarrow 1^{-}} \sqrt{x+3}+1 \stackrel{\text { plug in }}{\underline{1+3}}+1=2+1=3$.
Since $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=3$ then $\lim _{x \rightarrow 1} f(x)=3$.

1) $\lim _{\alpha \rightarrow \frac{\pi}{2}} \frac{\sqrt{1-\cos (\alpha)}-\sqrt{1+\cos (\alpha)}}{\cos (\alpha)}=$

$$
\begin{aligned}
& =\lim _{\alpha \rightarrow \frac{\pi}{2}} \frac{\sqrt{1-\cos (\alpha)}-\sqrt{1+\cos (\alpha)}}{\cos (\alpha)} \cdot \frac{\sqrt{1-\cos (\alpha)}+\sqrt{1+\cos (\alpha)}}{\sqrt{1-\cos (\alpha)}+\sqrt{1+\cos (\alpha)}}= \\
& =\lim _{\alpha \rightarrow \frac{\pi}{2}} \frac{(1-\cos (\alpha))-(1+\cos (\alpha))}{\cos (\alpha)(\sqrt{1-\cos (\alpha)}+\sqrt{1+\cos (\alpha)})}= \\
& =\lim _{\alpha \rightarrow \frac{\pi}{2}} \frac{-2}{\cos (\alpha)(\sqrt{1-\cos (\alpha)}+\sqrt{1+\cos (\alpha)})}=\lim _{\alpha \rightarrow \frac{\pi}{2}} \frac{-2}{\sqrt{1-\cos (\alpha)}+\sqrt{1+\cos (\alpha)}} \text { plug in } \\
& \stackrel{-2}{\underline{\operatorname{plug}} \text { in }} \frac{2}{\sqrt{1-\cos \left(\frac{\pi}{2}\right)}+\sqrt{1+\cos \left(\frac{\pi}{2}\right)}}=-\frac{2}{\sqrt{1-0}+\sqrt{1+0}}=-\frac{2}{2}=-1 .
\end{aligned}
$$

Ex 2. (20 points) Sketch the graph of a function f which satisfies simultaneously the following conditions:
a) $\lim _{x \rightarrow \infty} f(x)=-2$,
b) The line $y=3$ is a horizontal asymptote,
c) $f(3)=-3$,
d) The line $x=-1$ is a vertical asymptote,
e) $\lim _{x \rightarrow-1^{+}} f(x)=\infty$,
f) $\lim _{x \rightarrow-1^{-}} f(x)=1$,
g) $x=-1$ is a solution for the equation $f(x)=1$,
h) f has a removable discontinuity at $x=-3$.

Solution:

Let us translate some of these conditions geometrically.
a) $\lim _{x \rightarrow \infty} f(x)=-2$: this means that the line $y=-2$ is a horizontal asymptote for the graph of the function f.
b) The line $y=3$ is a horizontal asymptote: this means that $\lim _{x \rightarrow \infty} f(x)=3$ or $\lim _{x \rightarrow-\infty} f(x)=3$. Since we know already from a) that $\lim _{x \rightarrow \infty} f(x)=-2$ (and the limit is unique) then we get $\lim _{x \rightarrow-\infty} f(x)=3$.
c) $f(3)=-3$: the graph of the function passes through the point $(3,-3)$.
d) The line $x=-1$ is a vertical asymptote.
e) $\lim _{x \rightarrow-1^{+}} f(x)=\infty$,
g) $\lim _{x \rightarrow-1^{-}} f(x)=1$,
f) $x=-1$ is a solution for the equation $f(x)=1$: this means that $f(-1)=1$, i.e. the graph of the function passes through the point $(-1,1)$.
h) f has a removable discontinuity at $x=-3$: this means that $\lim _{x \rightarrow-3} f(x)=L$ exists (and is a number) and either f is undefined at $x=-3$ or $f(-3) \neq L$. In the example below we have $\lim _{x \rightarrow-3} f(x)=2$ and $f(-3)=0$.

Of course there exist infinitely many examples of functions satisfying simultaneously all the previous conditions. An example is given by the function whose graph is the following:

Ex 3. (20 points) Let a and b be two constants (= two real numbers) and f be the function:

$$
f(x)= \begin{cases}x^{2}-3 x+a, & \text { when } x<-1 \\ 2 \cos (\pi x), & \text { when }-1 \leq x \leq 2 \\ \frac{-2 x+2 b^{2}}{x}, & \text { when } x>2\end{cases}
$$

a) Compute $f(-1), \lim _{x \rightarrow(-1)^{-}} f(x), \lim _{x \rightarrow(-1)^{+}} f(x), f(2), \lim _{x \rightarrow 2^{-}} f(x), \lim _{x \rightarrow 2^{+}} f(x)$.
b) Find the values of a and b that make f continuous everywhere.

Solution:

We remark that $f(x)$ is a piecewise function whose branches are respectively defined on the intervals $(-\infty,-1),[-1,2]$ and $(2, \infty)$.
a) - When $x=-1$ then $f(x)=2 \cos (\pi x)$, hence:

$$
f(-1)=2 \cos (\pi \cdot(-1))=2 \cos (-\pi)=-2
$$

- When $x<-1$ then $f(x)=x^{2}-3 x+a$, hence:

$$
\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}} x^{2}-3 x+a=(-1)^{2}-3 \cdot(-1)+a=4+a
$$

- When $x>-1$ then $f(x)=2 \cos (\pi x)$, hence:

$$
\lim _{x \rightarrow(-1)^{+}} f(x)=\lim _{x \rightarrow(-1)^{+}} 2 \cos (\pi x)=2 \cos (\pi \cdot(-1))=2 \cos (-\pi)=-2
$$

- When $x=2$ then $f(x)=2 \cos (\pi x)$, hence:

$$
f(2)=2 \cos (2 \pi)=2
$$

- When $x<2$ then $f(x)=2 \cos (\pi x)$, hence:

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} 2 \cos (\pi x)=2 \cos (2 \pi)=2
$$

- When $x>2$ then $f(x)=\frac{-2 x+2 b^{2}}{x}$, hence:

$$
\lim _{x \rightarrow 22^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \frac{-2 x+2 b^{2}}{x}=\frac{-2 \cdot 2+2 b^{2}}{2}=\frac{-4+2 b^{2}}{2}=-2+b^{2} .
$$

b) First we remark that the function f is continuos on $(-\infty,-1)$ (because $x^{2}-3 x+a$ is a polynomial), on $(-1,2)$ (because $2 \cos (\pi x)$ is continuous) and on $(2, \infty)$ (because the only discontinuity of the rational function $\frac{-2 x+2 b^{2}}{x}$ is $x=0$ which is outside the interval $(2, \infty)$). Thus, the function f is continuous everywhere if and only if it is continuous simultaneously at $x=-1$ and $x=2$ (its breaking points).

Now:

- f is continuous at $1 \Leftrightarrow \lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=f(1) \Leftrightarrow-2=4+a \Leftrightarrow$ $a=-6$.
- f is continuous at $2 \Leftrightarrow \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2) \Leftrightarrow-2+b^{2}=2 \Leftrightarrow b^{2}=$ $4 \Leftrightarrow b=2$ or $b=-2$.

Therefore f is continuous simultaneously at $x=-1$ and $x=2$ if and only if ($a=-6$ and $b=2$) or $(a=-6$ and $b=-2)$

Ex 4. (20 points)

a) It is the Sunday before the test. A calculus student, following the suggestion of his instructor, decides to go hiking on the highest mountain in Florida in order to understand the Intermediate Value Theorem in a more concrete situation.
Let $h(t)$ be the function that at each time t (in hours) represents the height of the student above sea level (in feet). If

$$
h(t)=-t^{2}+5 t+1
$$

prove that there is a time between 0 and 3 hours at which the student is 6 feet above sea level.
b) Compute the instantaneous rate of change of $h(t)$ at $t=1$, that is $h^{\prime}(1)$, by using the definition of derivative.

Solution:

a) Mathematically we can rewrite the problem of the exercise in the following way:

$$
\begin{aligned}
& \text { If } h(t)=-t^{2}+5 t+1 \text {, show that there exists a number } c \text { in }(0,3) \text { such that } \\
& h(c)=6 .
\end{aligned}
$$

Recall:

Theorem (Intermediate Value Theorem). Let f be a continuous function on a closed interval $[a, b]$, with $f(a) \neq f(b)$. Then for every number N between $f(a)$ and $f(b)$ there exists c in (a, b) such that $f(c)=N$.

Let us apply the Intermediate Value Theorem to our exercise in 4 steps:

\& Set the function and the closed interval

Let us consider the function $h(t)=-t^{2}+5 t+1$ on the closed interval $[0,3]$.

\& Point out that the function is continuous on the closed interval

The function h is continuous everywhere (and in particular on $[0,3]$) since it is a polynomial.
\& Compute the value of the function at the endpoints of the interval We have:

$$
h(0)=-0+5 \cdot 0+1=1 \quad \text { and } \quad h(1)=-3^{2}+5 \cdot 3+1=7
$$

\& Conclusion

Now 6 is a number between 1 and $7(1<6<7)$, therefore by the Intermediate Value Theorem, there exists a number c in $(0,3)$ such that $h(c)=6$. In our original problem this number c represents the time at which the calculus student is 6 feet above sea level.
b) Recall the definition of the derivative of a function $f(x)$ at a point a :

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

We use the previous definition for computing the instantaneous rate of change of $h(t)$ at $t=1$, that is $h^{\prime}(1)$:

$$
\begin{aligned}
h^{\prime}(1)=\lim _{t \rightarrow 1} \frac{h(t)-h(1)}{t-1} & =\lim _{t \rightarrow 1} \frac{-t^{2}+5 t+1-(-1+5+1)}{t-1}= \\
& =\lim _{t \rightarrow 1} \frac{-t^{2}+5 t-4}{t-1}= \\
& =\lim _{t \rightarrow 1} \frac{-\left(t^{2}-5 t+4\right)}{t-1}= \\
& =\lim _{t \rightarrow 1} \frac{-(t-4)(t-1)}{t-1}= \\
& =\lim _{t \rightarrow 1} \frac{-(t-4)}{1}=\frac{-(1-4)}{1}=3 .
\end{aligned}
$$

Ex 5. (20 points) Which statements are True/False? Justify your answers.
a) A function can have at most 2 horizontal asymptotes.

True. Indeed $y=L$ is a horizontal asymptote if and only if either $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$. Hence, the maximum number of horizontal asymptotes that
a function can have is two, and this situation occurs when $\lim _{x \rightarrow \infty} f(x)=L_{1}$ and $\lim _{x \rightarrow-\infty} f(x)=L_{2}$, with $L_{1} \neq L_{2}$.
b) If $f(x)=\frac{P(x)}{Q(x)}$ is a rational function and a is a number such that $Q(a)=0$ then $x=a$ is a vertical asymptote for f.

False. Indeed a number a such that $Q(a)=0$ can also be a removable discontinuity for f (and in this case it does not correspond to a vertical asymptote). Consider as an example the following rational function:

$$
f(x)=\frac{x(x+1)}{x}
$$

The number $x=0$ makes the denominator equal zero, but

$$
\lim _{x \rightarrow 0} \frac{x(x+1)}{x}=\lim _{x \rightarrow 0} x+1=1
$$

Hence $x=0$ is a removable (and not infinite) discontinuity.
c) If $s(t)$ is a position function and $s(3)=0$, then the velocity at $t=3$ is zero.

False. Indeed, if $s(t)$ is a position function, the instantaneous velocity at a time t is given by the slope of the tangent line to the graph of $s(t)$ at the point $(t, s(t))$ (and not by the values of $s(t)$).
If we consider the position function $s(t)=t-3$ then $s(3)=0$, but $v(3)=1 \neq 0(1$ is indeed the slope of the line $s=t-3$).
d) If $-|x-1| \leq f(x) \leq|x-1|$ near 1 , then $\lim _{x \rightarrow 1} f(x)=0$.

True. Indeed $\lim _{x \rightarrow 1}-|x-1|=\lim _{x \rightarrow 1}|x-1|=0$. Then, since $-|x-1| \leq f(x) \leq|x-1|$, by the Squeeze Theorem one has also $\lim _{x \rightarrow 1} f(x)=0$.

