Calculus I - MAC 2311-Section 001

Homework 1

Instructions: Solve the following exercises in a separate sheet of paper. Be tidy and organized! You can work on the exercises with your friends (or enemies!) but the final editing has to be yours. The homework has to be returned by Wednesday January 31, 11 am . The total number for this homework is 104 (there are 4 extra points). The grade you will receive for this homework will count as a part of Quizzes and handwritten homework component of the total grade (15%).

Ex 1. (24 points) Compute the following limits and show all your work:
a) $\lim _{x \rightarrow-\sqrt{2}} \frac{x^{2}}{x+1}$
b) $\lim _{t \rightarrow-1} \frac{t^{2}-1}{t^{2}+7 t+6}$
c) $\lim _{x \rightarrow 1} \frac{-\sqrt{x}+1}{2 x-2}$
d) $\lim _{x \rightarrow \infty} \frac{2017 x^{2017}+2017}{2018 x^{2018}+2018}$
e) $\lim _{x \rightarrow-\infty} \frac{-3 x^{3}+8 x-1}{2 x^{3}-x^{2}+4}$
f) $\lim _{u \rightarrow-\infty} \frac{u^{2}+u+1}{-u+1}$
g) $\lim _{\alpha \rightarrow 0} \frac{\sin (8 \alpha)}{2 \alpha}$
h) $\lim _{\theta \rightarrow \frac{\pi}{2}-} \frac{\sin x}{\cos x}$
i) $\lim _{x \rightarrow 0} \frac{x-1}{x}$
j) $\lim _{x \rightarrow \infty} \frac{1}{x+\sqrt{3+x}}$
k) $\lim _{x \rightarrow 1} f(x)$, where $f(x)= \begin{cases}x^{3}-5 x+7, & \text { when } x \leq 1 \\ \sqrt{x+3}+1 & \text { when } x>1\end{cases}$

1) $\lim _{\alpha \rightarrow \frac{\pi}{2}} \frac{\sqrt{1-\cos (\alpha)}-\sqrt{1+\cos (\alpha)}}{\cos (\alpha)}$

Ex 2. (20 points) Sketch the graph of a function f which satisfies simultaneously the following conditions:
a) $\lim _{x \rightarrow \infty} f(x)=-2$,
b) The line $y=3$ is a horizontal asymptote,
c) $f(3)=-3$,
d) The line $x=-1$ is a vertical asymptote,
e) $\lim _{x \rightarrow-1^{+}} f(x)=\infty$,
f) $\lim _{x \rightarrow-1^{-}} f(x)=1$,
g) $x=-1$ is a solution for the equation $f(x)=1$,
h) f has a removable discontinuity at $x=-3$.

Ex 3. (20 points) Let a and b be two constants ($=$ two real numbers) and f be the function:

$$
f(x)= \begin{cases}x^{2}-3 x+a, & \text { when } x<-1 \\ 2 \cos (\pi x), & \text { when }-1 \leq x \leq 2 \\ \frac{-2 x+2 b^{2}}{x}, & \text { when } x>2\end{cases}
$$

a) Compute $f(-1), \lim _{x \rightarrow(-1)^{-}} f(x), \lim _{x \rightarrow(-1)^{+}} f(x), f(2), \lim _{x \rightarrow 2^{-}} f(x), \lim _{x \rightarrow 2^{+}} f(x)$.
b) Find the values of a and b that make f continuous everywhere.

Ex 4. (20 points)

a) It is the Sunday before the test. A calculus student, following the suggestion of his instructor, decides to go hiking on the highest mountain in Florida in order to understand the Intermediate Value Theorem in a more concrete situation.
Let $h(t)$ be the function that at each time t (in hours) represents the height of the student above sea level (in feet). If

$$
h(t)=-t^{2}+5 t+1
$$

prove that there is a time between 0 and 3 hours at which the student is 6 feet above sea level.
b) Compute the instantaneous rate of change of $h(t)$ at $t=1$, that is $h^{\prime}(1)$, by using the definition of derivative.

Ex 5. (20 points) Which statements are True/False? Justify your answers.
a) A function can have at most 2 horizontal asymptotes.
b) If $f(x)=\frac{P(x)}{Q(x)}$ is a rational function and a is a number such that $Q(a)=0$ then $x=a$ is a vertical asymptote for f.
c) If $s(t)$ is a position function and $s(3)=0$, then the velocity at $t=3$ is zero.
d) If $-|x-1| \leq f(x) \leq|x-1|$ near 1 , then $\lim _{x \rightarrow 1} f(x)=0$.

