Calculus I - MAC 2311 - Section 001

Quiz 2 - Solutions
01/24/2018

1) [7.5 points] Compute the following limits. Show all your work and state any special
limits used.
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Hence we need more work for computing the limit:
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Hence we need more work for computing the limit:
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2) [2.5 points] Give the definition of a function which is continuous at a number a.

A function is continuous at a number a if lim f(z) = f(a).

Tr—a
3) [Bonus| A student says:
The function
| cos(mx), when x < 1
flz) = { —sin (5z), when z > 1

is discontinuous at x = 1 because x =1 is a “breaking point” for f.
Do you agree or disagree with the student? Explain your answer.

Solution

I stongly disagree with the student. A piecewise function can also be continuous at
its breaking point. Indeed in this case we have:

o lim f(z) <! Jim cos(mz) = cos(m - 1) = cos(m) = —1;
r—1- r—1-

o lim f(x) 2! lim —sin (I:c) = —sin (I : 1) = —sin (I) =—1;
x—1t z—1t 2 2 2

o f(1) = cos(m - 1) = cos(m) = —1.

Since lim f(x) = lim f(z) = f(1), which is equivalent to lim f(x) = f(1), the func-
r—1— z—1+ z—1
tion f is continuous at x = 1 even if this is a “breaking point”. This is very clear if we

look at the graph of f(z).

y = cos(mx) y = —sin(g5x)
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