Calculus I - MAC 2311 - Section 001

Quiz 2 - Solutions

01/24/2018

1) [7.5 points] Compute the following limits. Show all your work and state any special limits used.
a) $\lim _{x \rightarrow-3} \frac{x^{2}+6 x+9}{x^{2}+2 x-3} \stackrel{\text { plug in }}{=} \frac{(-3)^{2}+6(-3)+9}{(-3)^{2}+2(-3)-3}=\frac{9-18+9}{9-6-3}=" \frac{0}{0}$ ".

Hence we need more work for computing the limit:

$$
\lim _{x \rightarrow-3} \frac{x^{2}+6 x+9}{x^{2}+2 x-3}=\lim _{x \rightarrow-3} \frac{(x+3)^{2}}{(x+3)(x-1)}=\lim _{x \rightarrow-3} \frac{x+3}{x-1} \stackrel{\text { plug in }}{=} \frac{-3+3}{-3-1}=\frac{0}{-4}=\mathbf{0}
$$

b) $\lim _{t \rightarrow 2} \frac{t^{2}-2 t}{\sqrt{2 t}-2} \stackrel{\text { plug in }}{=} \frac{2^{2}-2 \cdot 2}{\sqrt{2 \cdot 2}-2}=\frac{4-4}{2-2}=" \frac{0}{0}$ ".

Hence we need more work for computing the limit:

$$
\begin{aligned}
\lim _{t \rightarrow 2} \frac{t^{2}-2 t}{\sqrt{2 t}-2} & =\lim _{t \rightarrow 2} \frac{t^{2}-2 t}{\sqrt{2 t}-2} \cdot \frac{\sqrt{2 t}+2}{\sqrt{2 t}+2}= \\
& =\lim _{t \rightarrow 2} \frac{t(t-2)(\sqrt{2 t}+2)}{(\sqrt{2 t})^{2}-2^{2}}= \\
& =\lim _{t \rightarrow 2} \frac{t(t-2)(\sqrt{2 t}+2)}{2 t-4}= \\
& =\lim _{t \rightarrow 2} \frac{t(t-2)(\sqrt{2 t}+2)}{2(t-2)}= \\
& =\lim _{t \rightarrow 2} \frac{t(\sqrt{2 t}+2)}{2} \stackrel{\text { plug in }}{=} \frac{2 \cdot(\sqrt{2 \cdot 2}+2)}{2}=\frac{8}{2}=4
\end{aligned}
$$

c) $\lim _{\theta \rightarrow 0} \frac{\sin (2018 \theta)}{\theta} \stackrel{\operatorname{plug}}{=}$ in $\frac{\sin (2018 \cdot 0)}{0}=" \frac{0}{0}$ ".

Hence we need more work for computing the limit:

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \frac{\sin (2018 \theta)}{\theta} & =\lim _{\theta \rightarrow 0} \frac{\sin (2018 \theta)}{\theta} \cdot \frac{2018}{2018}= \\
& =\lim _{\theta \rightarrow 0} 2018 \cdot \frac{\sin (2018 \theta)}{2018 \theta}= \\
& =2018 \cdot \lim _{\theta \rightarrow 0} \frac{\sin (2018 \theta)}{2018 \theta} \stackrel{\lim _{\theta \rightarrow 0} \stackrel{\sin \theta}{\theta}=1}{=} 2018 \cdot 1=\mathbf{2 0 1 8}
\end{aligned}
$$

2) [2.5 points] Give the definition of a function which is continuous at a number a.

A function is continuous at a number a if $\lim _{x \rightarrow a} f(x)=f(a)$.
3) [Bonus] A student says:

The function

$$
f(x)= \begin{cases}\cos (\pi x), & \text { when } x \leq 1 \\ -\sin \left(\frac{\pi}{2} x\right), & \text { when } x>1\end{cases}
$$

is discontinuous at $x=1$ because $x=1$ is a "breaking point" for f.
Do you agree or disagree with the student? Explain your answer.

Solution

I stongly disagree with the student. A piecewise function can also be continuous at its breaking point. Indeed in this case we have:

- $\lim _{x \rightarrow 1^{-}} f(x) \stackrel{x<1}{=} \lim _{x \rightarrow 1^{-}} \cos (\pi x)=\cos (\pi \cdot 1)=\cos (\pi)=-1$;
- $\lim _{x \rightarrow 1^{+}} f(x) \stackrel{x \geq 1}{=} \lim _{x \rightarrow 1^{+}}-\sin \left(\frac{\pi}{2} x\right)=-\sin \left(\frac{\pi}{2} \cdot 1\right)=-\sin \left(\frac{\pi}{2}\right)=-1$;
- $f(1) \stackrel{x=1}{=} \cos (\pi \cdot 1)=\cos (\pi)=-1$.

Since $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$, which is equivalent to $\lim _{x \rightarrow 1} f(x)=f(1)$, the function f is continuous at $x=1$ even if this is a "breaking point". This is very clear if we look at the graph of $f(x)$.

