Name and surname:

U number:

Calculus I - MAC 2311 - Section 001
 Quiz 3 - Solutions
 01/31/2018

1) [2 points] State the Intermediate Value Theorem.

Theorem (Intermediate Value Theorem). Let f be a continuous function on a closed interval $[a, b]$, with $f(a) \neq f(b)$. Then for every number N between $f(a)$ and $f(b)$ there exists c in (a, b) such that $f(c)=N$.
2) [5 points] A residential complex near USF has a 12 feet deep swimming pool, which is currently empty. With the end of the "winter" season the management decides to fill in it again. If

$$
h(t)=\frac{1}{3} t^{3}-t^{2}+4 t
$$

represents the swimming pool water level (in feet) as a function of time (in hours), prove that between $t=0$ hours and $t=3$ hours there is a time at which the swimming pool is half full.

Solution:

Let us apply the Intermediate Value Theorem to our exercise in 4 steps:
\% Set the function and the closed interval
Let us consider the function $h(t)=-\frac{1}{3} t^{3}-t^{2}+4 t$ on the closed interval $[0,3]$.
\& Point out that the function is continuous on your closed interval The function h is continuous everywhere (and in particular on $[0,3]$) since it is a polynomial.
$\%$ Compute the value of the function at the endpoints of the interval We have

$$
h(0)=0 \quad \text { and } \quad h(3)=-\frac{1}{3} \cdot 3^{3}-3^{2}+4 \cdot 3=9-9+12=12 .
$$

\& Conclusion

Now the swimming pool is half full when its water level it 6 feet.
Since 6 is a number between 0 and $12(h(0)=0<6<h(3)=12)$, then, by the Intermediate Value Theorem, there exists a time t_{0} in $(0,3)$ such that $h\left(t_{0}\right)=6$, i.e. the swimming pool is half full.
3) [3 points] Compute the following limit and show all your work:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{-x^{3}-2 x+3}{4 x^{3}+5 x^{2}+6}=\lim _{x \rightarrow-\infty} \frac{x^{3}\left(-\frac{x^{3}}{x^{3}}-\frac{2 x}{x^{3}}+\frac{3}{x^{3}}\right)}{x^{3}\left(\frac{4 x^{3}}{x^{3}}+\frac{5 x^{2}}{x^{3}}+\frac{6}{x^{3}}\right)}=\lim _{x \rightarrow-\infty} \frac{x^{3}\left(-1-\frac{2}{x^{2}}+\frac{3}{x^{3}}\right)}{x^{3}\left(4+\frac{5}{x}+\frac{6}{x^{3}}\right)}= \\
= & \lim _{x \rightarrow-\infty} \frac{-1-\frac{2}{x^{2}}+\frac{3}{x^{3}}}{4+\frac{5}{x}+\frac{6}{x^{3}}}=" \frac{-1-\frac{2}{\infty}+\frac{3}{-\infty}}{4+\frac{5}{-\infty}+\frac{6}{-\infty}}=\frac{-1-0+0}{4+0-0}=-\frac{1}{4} .
\end{aligned}
$$

4) [Bonus] Let $s(t)$ be the position function (where the position is measured in meters and the time in seconds) whose graph is the following:

What is the instantaneous velocity at $t=4$ seconds? Why? (Do not forget the unit of measure in your answer).

Solution:

Recall that the instantaneous velocity at a time t_{0} is the slope of the tangent line to the graph of the position function at the point $\left(t_{0}, s\left(t_{0}\right)\right)$. When $t=4$ seconds, the graph of the position function is a line, which is tangent to itself. Hence we have just to compute the slope of that line. We remark that the line passes through the points $(3,1)$ and $(5,2)$. This implies that its slope is given by:

$$
\frac{2-1}{5-3}=\frac{1}{2} .
$$

We get that the instantaneous velocity at $t=4$ seconds is $0.5 \mathrm{~m} / \mathrm{s}$.

