Calculus I - MAC 2311 - Section 001
 Quiz 5 - Solutions
 02/21/2018

1) [5 points] Consider the curve \mathcal{C} given by the equation

$$
x-y^{3}=4-2 x^{2} y^{2}
$$

a) Use implicit differentiation to find y^{\prime} (i.e. $\left.\frac{d y}{d x}\right)$.
b) Find an equation of the tangent line to the above curve at the point $(1,-1)$.

Solution:

a) We take the derivative of each side of the equation of the curve with respect to x (recall to treat y as a function of x), and apply the rules of differentiation:

$$
\begin{aligned}
\frac{d}{d x}\left(x-y^{3}\right) & =\frac{d}{d x}\left(4-2 x^{2} y^{2}\right) \\
& \Downarrow \text { sum rule } \\
\frac{d}{d x} x-\frac{d}{d x} y^{3} & =\frac{d}{d x} 4-\frac{d}{d x}\left(2 x^{2} y^{2}\right) \\
& \Downarrow \text { product rule+chain rule } \\
1-3 y^{2} \cdot \frac{d y}{d x} & =0-\left[\frac{d}{d x}\left(2 x^{2}\right) \cdot y^{2}+2 x^{2} \cdot \frac{d}{d x}\left(y^{2}\right)\right] \\
& \Downarrow \\
1-3 y^{2} \cdot \frac{d y}{d x} & =-4 x y^{2}-4 x^{2} y \cdot \frac{d y}{d x}
\end{aligned}
$$

Now we have an ordinary linear equation where the unknown we want to solve for is $\frac{d y}{d x}$. From the last step we obtain:

$$
\begin{array}{r}
-3 y^{2} \cdot \frac{d y}{d x}+4 x^{2} y \cdot \frac{d y}{d x}=-4 x y^{2}-1 \\
\Downarrow \\
\left(-3 y^{2}+4 x^{2} y\right) \cdot \frac{d y}{d x}=-4 x y^{2}-1
\end{array}
$$

which implies

$$
\frac{d y}{d x}=\frac{-4 x y^{2}-1}{-3 y^{2}+4 x^{2} y}
$$

b) If $P(x, y)$ is a point on the lemniscate, i.e. the coordinates x and y of P make the equation of \mathcal{C} true, we have that the slope of the tangent line to the curve \mathcal{C} at $P(x, y)$ is given by:

$$
\frac{d y}{d x}=\frac{-4 x y^{2}-1}{-3 y^{2}+4 x^{2} y}
$$

Hence, for the point $(1,-1)$, by substituting $x=1$ and $y=-1$ in the previous formula, we get:

$$
\frac{d y}{d x}=\frac{-4(1)(-1)^{2}-1}{-3(-1)^{2}+4(1)^{2}(-1)}=\frac{-4-1}{-3-4}=\frac{5}{7}
$$

We deduce that an equation of the tangent line to the curve \mathcal{C} at the point $(1,-1)$ is

$$
y-(-1)=\frac{5}{7} \cdot(x-1)
$$

i.e.

$$
y=\frac{5}{7} x-\frac{12}{7}
$$

2) [5 points] In thermodynamics, Boyle's law states that for a fixed amount of an ideal gas kept at a fixed temperature, pressure P and volume V are inversely proportional, i.e.

$$
P V=k
$$

where k is a constant. Assume that the quantities P and V depend both on time.
a) Differentiate both sides of Boyle's law to find an equation relating $\frac{d P}{d t}$ and $\frac{d V}{d t}$.
b) A sample of gas is trapped in a cylinder by a piston which is slowly compressed. Suppose that at a certain instant the gas occupies a volume of 60 L (liters) and has a pressure of 50 kPa (kilopascal) and the volume of the gas decreases at a rate of $10 \mathrm{~L} / \mathrm{min}$. Assuming the temperature is constant, how quickly is the pressure increasing at this instant?

Solution:

a) Since the volume V and the pressure P depend on time, while k is constant, we can rewrite the Boyle's law in the following way:

$$
P(t) \cdot V(t)=k
$$

By differentiating both sides of the previous equation with respect to time we obtain:

$$
\begin{aligned}
\frac{d}{d t}[P(t) \cdot V(t)] & =\frac{d}{d t} k \\
& \Downarrow \text { product rule } \\
\frac{d P}{d t} \cdot V(t)+P(t) \cdot \frac{d V}{d t} & =0
\end{aligned}
$$

b) Known: We know that at a certain instant t_{0} we have $\left.\frac{d V}{d t}\right|_{t=t_{0}}=-10 \mathrm{~L} / \mathrm{min}$ (the sign "-" is due to the fact that the volume is decreasing), $V\left(t_{0}\right)=60 \mathrm{~L}$ and $P\left(t_{0}\right)=50 \mathrm{kPa}$.
Unknown: $\frac{d P}{d t}$ at $t=t_{0}$, i.e. $\left.\frac{d P}{d t}\right|_{t=t_{0}}$

We have to solve the last equation for $\frac{d P}{d t}$:

$$
\begin{aligned}
\frac{d P}{d t} \cdot V(t)+P(t) \cdot \frac{d V}{d t} & =0 \\
& \Downarrow \\
\frac{d P}{d t} \cdot V(t) & =-P(t) \cdot \frac{d V}{d t} \\
& \Downarrow \\
\frac{d P}{d t} & =-\frac{P(t) \cdot \frac{d V}{d t}}{V(t)}
\end{aligned}
$$

At time $t=t_{0}$ we have:

$$
\left.\frac{d P}{d t}\right|_{t=t_{0}}=-\frac{\left.P\left(t_{0}\right) \cdot \frac{d V}{d t}\right|_{t=t_{0}}}{V\left(t_{0}\right)}=-\frac{50 \mathrm{kPa} \cdot\left(-10 \frac{\mathrm{~L}}{\min }\right)}{60 \mathrm{~L}}=\frac{50}{6} \frac{\mathrm{kPa}}{\min }=\frac{25}{3} \mathrm{kPa} / \mathrm{min}
$$

3) [Bonus] Compute the following derivative:

$$
\frac{d}{d u}\left[\tan \left(k^{3} u\right)\right]
$$

where k is a constant.

Solution:

Since k is a constant, also k^{3} is a constant. Then:

$$
\frac{d}{d u}\left[\tan \left(k^{3} u\right)\right]=\sec ^{2}\left(k^{3} u\right) \cdot \frac{d}{d u}\left(k^{3} u\right)=\sec ^{2}\left(k^{3} u\right) \cdot k^{3}
$$

