Name and surname:

U number:

Calculus I - MAC 2311 - Section 001
 Quiz 5
 02/21/2018

Instructions: The total number of points of this quiz is 10 . You will get an extra point if you solve correctly the last exercise.

1) [5 points] Consider the curve \mathcal{C} given by the equation

$$
x-y^{3}=4-2 x^{2} y^{2}
$$

a) Use implicit differentiation to find y^{\prime} (i.e. $\left.\frac{d y}{d x}\right)$.
b) Find an equation of the tangent line to the above curve at the point $(1,-1)$.
2) [5 points] In thermodynamics, Boyle's law states that for a fixed amount of an ideal gas kept at a fixed temperature, pressure P and volume V are inversely proportional, i.e.

$$
P V=k
$$

where k is a constant. Assume that the quantities P and V depend both on time.
a) Differentiate both sides of Boyle's law to find an equation relating $\frac{d P}{d t}$ and $\frac{d V}{d t}$.
b) A sample of gas is trapped in a cylinder by a piston which is slowly compressed. Suppose that at a certain instant the gas occupies a volume of 60 L (liters) and has a pressure of 50 kPa (kilopascal) and the volume of the gas decreases at a rate of $10 \mathrm{~L} / \mathrm{min}$. Assuming the temperature is constant, how quickly is the pressure increasing at this instant?
3) [Bonus] Compute the following derivative:

$$
\frac{d}{d u}\left[\tan \left(k^{3} u\right)\right]
$$

where k is a constant.

