Calculus I - MAC 2311 - Section 001

Quiz 6 - Solutions

03/21/2018

1) [2 points] Simplify the expression $\sin \left(\tan ^{-1}(3 x)\right)$.

Solution:

Let us set $y=\tan ^{-1}(3 x)$. Then $\tan (y)=3 x$ and $-\frac{\pi}{2}<y<\frac{\pi}{2}$.
We recall that in a right triangle $\tan (y)=\frac{\text { opposite leg }}{\text { adjacent leg. Here } \tan (y)=\frac{3 x}{1} \text {, hence we }}$ can consider the right triangle with opposite leg of length $3 x$ and adjacent leg of length 1 (see the picture below):

Hence:

$$
\sin \left(\tan ^{-1}(3 x)\right)=\sin (y)=\frac{\text { opposite leg }}{\text { hypothenuse }}=\frac{3 x}{\sqrt{1+9 x^{2}}} .
$$

2) [2 points] Compute the derivative of $x^{2} \cdot \arcsin \left(3 x^{2}\right)$.

Solution:

Let $f(x)=x^{2} \cdot \arcsin \left(3 x^{2}\right)$. We have:

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{2} \cdot \arcsin \left(3 x^{2}\right)\right)^{\prime}= \\
& =\left(x^{2}\right)^{\prime} \cdot \arcsin \left(3 x^{2}\right)+x^{2} \cdot\left(\arcsin \left(3 x^{2}\right)\right)^{\prime}= \\
& =2 x \cdot \arcsin \left(3 x^{2}\right)+x^{2} \cdot \frac{1}{\sqrt{1-\left(3 x^{2}\right)^{2}}} \cdot\left(3 x^{2}\right)^{\prime}= \\
& =2 x \cdot \arcsin \left(3 x^{2}\right)+x^{2} \cdot \frac{1}{\sqrt{1-9 x^{4}}} \cdot 6 x= \\
& =2 x \cdot \arcsin \left(3 x^{2}\right)+\frac{6 x^{3}}{\sqrt{1-9 x^{4}}} .
\end{aligned}
$$

3) $[2$ points $]$ Prove that $\frac{d}{d x}[\arcsin (x)]=\frac{1}{\sqrt{1-x^{2}}}$.

Solution:

We set $y=\arcsin (x)$. Then $\sin y=x$ and $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$. We want to prove that $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$. We have:

$$
\begin{gathered}
\frac{d}{d x}(\sin y)=\frac{d}{d x}(x) \\
\Downarrow \\
\cos y \cdot \frac{d y}{d x}=1 \\
\Downarrow \\
\frac{d y}{d x}=\frac{1}{\cos y}
\end{gathered}
$$

Now, from the Pythagorean identity $\cos ^{2}(y)+\sin ^{2}(y)=1$, we obtain:

$$
\begin{aligned}
\cos ^{2}(y) & =1-\sin ^{2}(y) \\
& \Downarrow \cos y \geq 0 \text { when } y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
\cos y & =\sqrt{1-\sin ^{2} y} \\
& \Downarrow \sin y=x \\
\cos y & =\sqrt{1-x^{2}}
\end{aligned}
$$

and therefore $\frac{d y}{d x}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-x^{2}}}$.
4) [6 points] Compute the following limits:
a) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin (x)}{\cos (x)}$

Solution:

We have $\lim _{x \rightarrow \frac{\pi}{2}} 1-\sin (x)=1-\sin \left(\frac{\pi}{2}\right)=0$ and $\lim _{x \rightarrow \frac{\pi}{2}} \cos (x)=\cos \left(\frac{\pi}{2}\right)=0$, so we are faced with the indeterminate form $\frac{0}{0}$. Hence we can apply L'Hospital's Rule:
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin (x)}{\cos (x)}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{(1-\sin (x))^{\prime}}{(\cos (x))^{\prime}}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{-\cos (x)}{-\sin (x)} \stackrel{\text { plug in }}{=} \frac{-\cos \left(\frac{\pi}{2}\right)}{-\sin \left(\frac{\pi}{2}\right)}=\frac{0}{-1}=\mathbf{0}$.
b) $\lim _{x \rightarrow \infty} x^{3} e^{-x^{2}}$

Solution:
We have $\lim _{x \rightarrow \infty} x^{3}=\infty$ and $\lim _{x \rightarrow \infty} e^{-x^{2}}=0$, so that we are faced with the indeterminate form $\infty \cdot 0$. Hence we rewrite the limit in the following way:

$$
\lim _{x \rightarrow \infty} x^{3} e^{-x^{2}}=\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x^{2}}}
$$

Now the indeterminate form is $\frac{\infty}{\infty}$ and we can apply L'Hospital's Rule:

$$
\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\left(x^{3}\right)^{\prime}}{\left(e^{x^{2}}\right)^{\prime}}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{e^{x^{2}} \cdot 2 x} \stackrel{\text { simplify }}{=} \lim _{x \rightarrow \infty} \frac{3 x}{e^{x^{2}} \cdot 2} .
$$

Again, we are faced with the indeterminate form $\frac{\infty}{\infty}$, therefore we apply a second time L'Hospital's Rule:

$$
\lim _{x \rightarrow \infty} \frac{3 x}{2 e^{x^{2}}}=\lim _{x \rightarrow \infty} \frac{(3 x)^{\prime}}{\left(2 e^{x^{2}}\right)^{\prime}}=\lim _{x \rightarrow \infty} \frac{3}{2 e^{x^{2}} \cdot 2 x}=" \frac{1}{\infty} "=\mathbf{0} .
$$

c) $\lim _{x \rightarrow \infty} x^{\frac{1}{x}}$

Solution:

We have:
$\lim _{x \rightarrow \infty} x^{\frac{1}{x}} \stackrel{\text { cancellation equation }}{=} \lim _{x \rightarrow \infty} e^{\ln \left(x^{\frac{1}{x}}\right)} \stackrel{\log \text { arithm law }}{=} \lim _{x \rightarrow \infty} e^{\frac{1}{x} \ln (x)} \stackrel{\text { continuity of } e^{x}}{=} e^{\lim _{x \rightarrow \infty} \frac{1}{x} \ln (x)}$.
Now we compute separately $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (x)$:

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \ln (x)=\lim _{x \rightarrow \infty} \frac{\ln (x)}{x} \stackrel{\infty}{=} \lim _{x \rightarrow \infty} \frac{(\ln (x))^{\prime}}{(x)^{\prime}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=" \frac{1}{\infty} "=0 .
$$

Therefore we have:

$$
\lim _{x \rightarrow \infty} x^{\frac{1}{x}}=e^{\lim _{x \rightarrow \infty} \frac{1}{x} \ln (x)}=e^{0}=1 .
$$

