Calculus I - MAC 2311 - Section 001

 Quiz 7 - Solutions

 Quiz 7 - Solutions
 03/28/2018

1) a) [1.5 points] Give the definition of a critical number of a function f.

A critical number of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.
b) [1.5 points] State the Mean Value Theorem.

Let f be a function which is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). Then there exists c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

2) [4 points] Find the absolute maximum and minimum values of the function

$$
f(x)=x^{2} e^{-x}
$$

on the closed interval $[1,3]$.

Solution:

Since f is a continuous function on the closed interval $[1,3]$, the Extreme Value Theorem guarantees that f attains an absolute maximum value and an absolute minimum value on $[1,3]$. Let us find them!

- Compute the values of f at the endpoints of the interval $[1,3]$.

We have $f(1)=1 \cdot e^{-1}=\frac{1}{e} \sim 0.36$ and $f(3)=3^{2} e^{-3}=\frac{9}{e^{3}} \sim 0.44$.

- Find the critical numbers of f in $(1,3)$ and their corresponding values.

Since f is differentiable everywhere, its critical numbers in $(1,3)$ are all the numbers c in $(1,3)$ such that $f^{\prime}(c)=0$.
Here we have:
$f^{\prime}(x)=\left(x^{2} e^{-x}\right)^{\prime}=2 x e^{-x}+x^{2} e^{-x} \cdot(-1)=2 x e^{-x}-x^{2} e^{-x}=x e^{-x}(2-x)$.
Thus $f^{\prime}(x)=0$ if and only if $x=0$ or $x=2$ (note that $e^{-x} \neq 0$ for all x). Now only 2 is inside the interval $(1,3)$ and the corresponding value is $f(2)=2^{2} e^{-2}=\frac{4}{e^{2}} \sim 0.54$.

- Compare the values obtained in step 1 and step 2 and return the absolute maximum and the absolute minimum values of f.
We have $f(1) \sim 0.36<f(3) \sim 0.44<f(2) \sim 0.54$, so the absolute maximum value of f on $[1,3]$ is $f(2)$ and the absolute minimum value of f on $[1,3]$ is $f(2)$.

3) [4 points] Let f be a differentiable function such that $f^{\prime}(x) \leq 2$ for all x in \mathbb{R}. If $f(0)=3$, what is the greatest value that f may attain at 2 ?

Solution:

We consider the function f on the closed interval $[0,2]$. Since f is a function which is differentiable everywhere, we have that in particular f is continuous on $[0,2]$ and
differentiable on $(0,2)$. Thus, by the Mean Value Theorem, there exists c in $(0,2)$ such that

$$
f^{\prime}(c)=\frac{f(2)-f(0)}{2-0} \stackrel{f(0)=3}{=} \frac{f(2)-3}{2}
$$

By hypothesis $f^{\prime}(c) \leq 2$. Therefore we have:

$$
\frac{f(2)-3}{2} \leq 2 \Leftrightarrow f(2)-3 \leq 4 \Leftrightarrow f(2) \leq 7
$$

In conclusion, the greatest value that f may attain at 0 is 7 .
4) [Bonus] Is the following statement true of false? Justify your answer.

Let f be a function such that $f^{\prime \prime}(x)>0$ for all x, and $f^{\prime}(2)=2$. Then $f(2018)>$ $f(2017)$.

TRUE

Since $f^{\prime \prime}(x)>0$ for all x, then $f^{\prime}(x)$ is an increasing function on $(-\infty, \infty)$. Since $f^{\prime}(2)=2$ and f^{\prime} is increasing, this implies that $f^{\prime}(x)>0$ on $(2, \infty)$; in particular $f^{\prime}(x)>0$ on $(2, \infty)$. Thus f is increasing on $(2, \infty)$ and, by definition, $f(2018)>$ $f(2017)$.

