Calculus I - MAC 2311 - Section 001

Quiz - Solutions
 04/04/2018

1) The graph of the derivative f^{\prime} of a function f is shown below.

a) What are the critical numbers of f ?

Since the function f^{\prime} is defined everywhere (i.e. f is differentiable), then c is a critical number if and only if $f^{\prime}(c)=0$. Hence the critical numbers of f are the x-coordinates of the points at which the graph of f^{\prime} crosses the x-axis:

$$
\text { critical numbers : } x=-3, x=1, x=3 .
$$

b) Over which intervals is the function f increasing/decreasing?

We have $f^{\prime}(x)>0$ on $(-3,1) \cup(3, \infty)$ and $f^{\prime}(x)<0$ on $(-\infty,-3) \cup(1,3)$. Then f is increasing on $(-3,1) \cup(3, \infty)$ and decreasing on $(-\infty,-3) \cup(1,3)$:

c) At what numbers does f have a local minimum/maximum value?

From (b) we get that f has a local minimum value at $x=-3$ and $x=3$, and a local maximum value at $x=1$.
d) Over which intervals is f concave down/up?

We have $f^{\prime \prime}(x)>0$ on $(-\infty, 0) \cup(2, \infty)$ and $f^{\prime \prime}(x)<0$ on $(0,2)$. Then f is concave up on $(-\infty, 0) \cup(2, \infty)$ and concave down on $(0,2)$.

e) What are the x-coordinates of the inflection points?

Since $f^{\prime \prime}(x)$ changes sign at $x=0$ and at $x=2$ and f is continuous everywhere, then $x=0$ and $x=2$ are the coordinates of the 2 inflection points.
e) Assuming that $f(0)=0$, sketch a graph of f on the axis provided below.

2) [Bonus] Recall that:

Proposition: If f is a function such that $f^{\prime}(x)=0$ for all x in \mathbb{R}, then f is a constant function.

Use the previous result to prove that, if f and g are two differentiable functions such that $f^{\prime}(x)=g^{\prime}(x)$ for all x in \mathbb{R}, then there exists a real number c such that $f(x)=g(x)+c$.

Let us consider the function $h(x)=f(x)-g(x)$. Since $f^{\prime}(x)=g^{\prime}(x)$ for all x, then $h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0$ for all x. By the proposition above, one has that $h(x)$ is a constant function, that is there exists c in \mathbb{R} such that $h(x)=c$. This implies $f(x)-g(x)=c$, i.e. $f(x)=g(x)+c$.

