Calculus I - MAC 2311-Section 001

Review session Test 2

$3 / 01 / 2018$

Ex 1. Sketch the graph of a function $g(t)$ which satisfies all the following conditions:
a) $g^{\prime}(t)>0$ for all $t<-2$,
b) $g^{\prime}(-2)$ does not exist,
c) $g^{\prime}(t)>0$ for all t in $(-2,3)$,
d) $g^{\prime}(3)=0$,
e) $g^{\prime}(t)>0$ for all $t>3$.

Ex 2. The ideal gas law relates the temperature, pressure, and volume of an ideal gas. Given n moles of gas, the pressure P (in kPa), volume V (in liters), and temperature T (in kelvin) are related by the equation

$$
P V=n R T
$$

where R is the molar gas constant $\left(R \cong 8.314 \frac{\mathrm{kPa} \cdot \text { liters }}{\text { kelvin }}\right)$. Assume that the pressure, the volume and the temperature of the gas depend all on time.
a) Suppose that one mole of ideal gas is held in a closed container with a volume of 25 liters. If the temperature of the gas is increasing at a rate of 3.5 kelvin $/ \mathrm{min}$, how quickly will the pressure increase?
b) Suppose instead that the temperature of the gas is held fixed at 300 kelvin, while the volume decreases at a rate of 2.0 liters $/ \mathrm{min}$. How quickly is the pressure of the gas increasing at the instant that the volume is 20 liters?

Ex 3. Compute the derivatives of the following functions:
a) $f(\theta)=\theta^{7}+2 \theta^{e}-\frac{\pi}{\theta}+\frac{1}{\sqrt[2018]{\theta^{2017}}}$
g) $u(x)=e^{\frac{1}{x^{2}+1}}$
b) $g(v)=\frac{v \ln (v)}{e^{v}}$
h) $g(\alpha)=\tan ^{2}\left(3 \alpha^{2}+2\right)$
i) $h(t)=\cos (\beta) \sin (t)$, where β is a con-
c) $w(t)=\sqrt[3]{t^{2}+\cos (t)}$ stant
d) $h(x)=\sin \left(x^{2}\right) e^{3 x}$
j) $w(u)=\sin \left(\ln \left(\frac{u}{\cos (3 u)}\right)\right)$
e) $v(x)=\ln \left(\left(x^{3}-5 x+1\right)^{5}\right)$
k) $g(x)=x^{\pi x}$
f) $f(u)=k \sqrt[k]{9 e^{2 \pi^{2}}} u$, where k is a con-
l) $f(t)=t^{\sin (t)+e^{t}}$

Ex 4. Use logarithmic differentiation to prove the power rule.

Ex 5. Consider the curve \mathcal{C} given by the equation

a) Use implicit differentiation to find y^{\prime} (i.e. $\frac{d y}{d x}$).
b) Find an equation of the tangent line to the above curve at the point $(2,1)$.

Ex 6. An ant moves according to the position function:

$$
s(t)=2 e^{\sqrt{t}-3},
$$

where t is in minutes and $s(t)$ in meters.

a) Find the linearization of $s(t)$ at $t=9$ and use it to approximate the position of the ant at $t=10 \mathrm{~min}$.
b) Find the velocity of the ant as a function of t.
c) Does the ant ever stop?
d) Find the acceleration of the ant as a function of t.
e) Find the acceleration at $t=2 \mathrm{~min}$.

Ex 7.

Let f and g be the functions whose graphs are shown above and let

$$
h(x)=f(x)+g(x), \quad u(x)=f(x) g(x), \quad v(x)=\frac{f(x)}{g(x)}, \quad w(x)=g(f(x))
$$

Compute $h^{\prime}(1), u^{\prime}(1), v^{\prime}(1)$ and $w^{\prime}(1)$, without finding explicit formulas for $f(x)$ and $g(x)$.

Ex 8. $(5+5+10$ points) A couple of alligators meets at the intersection of Bruce B. Downs Blvd and Fowler Ave for organizing a romantic dinner. The male alligator starts running east at a speed of 0.4 miles per minute to chase a USF student. At the same time the female alligator starts running north at a speed of 0.3 miles per minute to chase a USF instructor. At what rate is the distance between the two alligators increasing after 5 minutes?

