Calculus I - MAC 2311 - Section 001
 In-class review session Test 3
 04/04/2018

Ex 1. Find two integers whose sum is 32 and product is maximum.

Ex 2. Among all rectangles with area $25 \mathrm{~cm}^{2}$, what are the dimensions of that one that has the smallest perimeter?

Ex 3. Giovanni wants to construct a rectangular swimming pool of fixed volume 1620 cubic feet so that the width of its base is twise the lenght. On the floor he wants to use tiles that cost $\$ 100$ per square feet and on the sides he wants to use tiles that cost $\$ 60$ per square feet. Which is the minimum amount of money that Giovanni has to spend in order to build such a swimming pool? How deep would the swimming pool that minimizes the cost be?

Ex 4. Consider the function

$$
f(x)=\frac{1}{x^{2}-1} .
$$

a) Find the domain of definition of f.
b) Find the x - and y-intercepts.
c) Find the horizontal and vertical asymptotes.
d) Find the critical numbers of f.
e) Find the intervals over which f is increasing/decreasing and the local maximum/minimum value of f.
f) After having shown that

$$
f^{\prime \prime}(x)=\frac{6 x^{2}+2}{\left(x^{2}-1\right)^{3}},
$$

find the intervals where f is concave upward/downward and the inflection points of f, if any.
g) Sketch the graph of $y=f(x)$, by using the information you collected above.

Ex 5. Find the point on the curve $y=\sqrt{x}$ which is closest to the point $(3,0)$.

