Calculus I - MAC 2311 - Section 001

Review session Final Exam

4/26/2018

Ex 1. Compute the following (definite or indefinite) integrals:
a) $\int 3 \sin (x)+\frac{4}{1+x^{2}}+2 d x$
b) $\int(t+3)\left(2-t^{2}\right)+\frac{\sqrt{t}+t}{t^{2}} d t$
c) $\int_{-\pi}^{\frac{\pi}{2}} 3 \sin (x)-8 \cos (x) d x$
d) $\int_{1}^{0}-2 e^{u}+\frac{1}{1+u^{2}} d u$

Ex 2. Let f be the function whose graph is the following:

a) Compute $\int_{-7}^{7} f(x) d x$.
b) Compute $\int_{-7}^{0} 3 f(x) d x+\int_{0}^{5} f(x)+\sqrt{25-x^{2}} d x-\int_{7}^{5} 2 f(x)+2 x d x$.

Ex 3. A particle is moving with acceleration given by the function $a(t)=12 t^{2}+2 \sin (t)$ (measured in meters per second squared).
a) Find the position function of the particle if its initial velocity is 5 meters per second and the position at $t=\pi$ is π^{4} meters.
b) Find the position function of the particle if its initial position is 2 meters and its position at $t=\frac{\pi}{2}$ is 0 meters.

Ex 4. Compute the derivative of the following functions:
a) $f(t)=\sqrt{1+t \arccos (t)}$
b) $f(x)=\frac{e^{\tan (x)}+1}{\cos (x)}$
c) $f(s)=\arctan (\sqrt{s}) \cdot \ln (2 s)$
d) $f(t)=(\sin (t))^{t^{2}}$
e) $g(x)=\int_{-1}^{x} \ln \left(t^{2}+1\right) d t$
f) $g(t)=\int_{0}^{e^{t}} \frac{x^{2}-1}{x^{2}+1} d x$
g) $g(s)=\int_{\cos (s)}^{3 s} \sin \left(t^{2}+1\right) d t$

Ex 5. A cone shaped paper drinking cup is to be made to hold $27 \mathrm{~cm}^{3}$ of water. Find the height and radius of the cup that will require the least amount of paper.

Ex 6. Compute the following limits:
a) $\lim _{x \rightarrow-\infty}-x^{4}+x^{2}$

Does the function $f(x)=-x^{4}+x^{2}$ have a horizontal asymptote at $-\infty$? If yes, write its equation.
b) $\lim _{t \rightarrow 1} \frac{\ln (1+\ln (t))}{t^{2}-1}$

Is $t=1$ a vertical asymptote for the function $f(t)=\frac{\ln (1+\ln (t))}{t^{2}-1}$?
c) $\lim _{x \rightarrow \infty} \frac{-\sqrt{2} x^{5}-8 x^{4}+5}{\pi x^{5}-e}$

Does the function $f(x)=\frac{-\sqrt{2} x^{5}-8 x^{4}+5}{\pi x^{5}-e}$ have a horizontal asymptote at ∞ ? If yes, write its equation.
d) $\lim _{x \rightarrow-3} \frac{\cos (\pi x)}{(x+3)^{2}}$

Is $x=-3$ a vertical asymptote for the function $f(x)=\frac{\cos (\pi x)}{(x+3)^{2}}$?
e) $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{3 x^{2}}$

Is $x=0$ a vertical asymptote for the function $f(x)=\frac{e^{x^{2}}-1}{3 x^{2}} ?$
f) $\lim _{x \rightarrow \infty} \int_{1}^{x} \frac{1}{1+t^{2}}+\frac{1}{t^{2}} d t$

Does the function $g(x)=\int_{1}^{x} \frac{1}{1+t^{2}}+\frac{1}{t^{2}} d t$ have a horizontal asymptote at ∞ ? If yes, write its equation.

Ex 7. Consider the function $f(x)=(1+x)(3-x)$ whose graph on the interval $[-1,3]$ is sketched below. Let S be the region between the curve $y=f(x)$, the x-axis and the lines $x=-1$ and $x=3$.

a) Draw in the picture above the rectangles associate to the right Riemann sum with $n=4$.
b) Approximate the area of S with the right Riemann sum with $n=4$.
c) Express the area of S as a definite integral.
d) Compute the exact value of the area of S.
e) Was your approximation an underestimate or an overestimate?

Ex 8 Let $f(x)=x^{4}-4 x^{2}$.
(a) List the following, showing all work:

- the x and y - intercepts, if any
- the horizontal and vertical asymptotes, if any
- the intervals of increase and decrease of f
- all local maximum and local minimum values of f
- the intervals over which f is concave up and the intervals over which f is concave down
- all inflection points

Sketch the graph of f and label all the items that you listed.
(b) Repeat the exercise for the functions $g(t)=\frac{1}{t}+t+1$ and $h(x)=x^{2} e^{x}$.

Ex 9. Let $f(x)=\cos \left(\tan ^{-1}\left(\frac{1}{e^{x}}\right)\right)$. Simplify the expression of f and compute $f(0)$.

Ex 10. At noon ship A is 100 km west of ship B. Ship A is sailing south at $35 \mathrm{~km} / \mathrm{h}$ and ship B is sailing north at $25 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing at 4:00 pm.

Ex 11. Using the Mean Value Theorem and the Fundamental Theorem of Calculus, prove that if f is continuous on $[a, b]$ then there exists a number c in (a, b) such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a) .
$$

Give a geometrical interpretation of this result.
Remark: This theorem is called Mean Value Theorem for Integrals.

Ex 12. A piece of wire 10 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. How should the wire be cut so that the total area enclosed is as small as possible?

