Calculus I - MAC 2311 - Section 001

Review session Final Exam 4/26/2018

Ex 1. Compute the following (definite or indefinite) integrals:

a)
$$\int 3\sin(x) + \frac{4}{1+x^2} + 2 \, dx$$

b) $\int (t+3)(2-t^2) + \frac{\sqrt{t}+t}{t^2} \, dt$
c) $\int_{-\pi}^{\frac{\pi}{2}} 3\sin(x) - 8\cos(x) \, dx$
d) $\int_{1}^{0} -2e^u + \frac{1}{1+u^2} \, du$

- **Ex 3.** A particle is moving with acceleration given by the function $a(t) = 12t^2 + 2\sin(t)$ (measured in meters per second squared).
 - a) Find the position function of the particle if its initial velocity is 5 meters per second and the position at $t = \pi$ is π^4 meters.
 - b) Find the position function of the particle if its initial position is 2 meters and its position at $t = \frac{\pi}{2}$ is 0 meters.

Ex 4. Compute the derivative of the following functions:

a)
$$f(t) = \sqrt{1 + t \arccos(t)}$$

b) $f(x) = \frac{e^{\tan(x)} + 1}{\cos(x)}$
c) $f(s) = \arctan(\sqrt{s}) \cdot \ln(2s)$
d) $f(t) = (\sin(t))^{t^2}$
e) $g(x) = \int_{-1}^{x} \ln(t^2 + 1) dt$
f) $g(t) = \int_{0}^{e^t} \frac{x^2 - 1}{x^2 + 1} dx$
g) $g(s) = \int_{\cos(s)}^{3s} \sin(t^2 + 1) dt$

Ex 5. A cone shaped paper drinking cup is to be made to hold 27 cm^3 of water. Find the height and radius of the cup that will require the least amount of paper.

Ex 6. Compute the following limits:

a) $\lim_{x \to -\infty} -x^4 + x^2$

Does the function $f(x) = -x^4 + x^2$ have a horizontal asymptote at $-\infty$? If yes, write its equation.

b) $\lim_{t \to 1} \frac{\ln(1 + \ln(t))}{t^2 - 1}$

Is t = 1 a vertical asymptote for the function $f(t) = \frac{\ln(1 + \ln(t))}{t^2 - 1}$?

c) $\lim_{x \to \infty} \frac{-\sqrt{2}x^5 - 8x^4 + 5}{\pi x^5 - e}$

Does the function $f(x) = \frac{-\sqrt{2}x^5 - 8x^4 + 5}{\pi x^5 - e}$ have a horizontal asymptote at ∞ ? If yes, write its equation.

d) $\lim_{x \to -3} \frac{\cos(\pi x)}{(x+3)^2}$

Is x = -3 a vertical asymptote for the function $f(x) = \frac{\cos(\pi x)}{(x+3)^2}$?

e) $\lim_{x \to 0} \frac{e^{x^2} - 1}{3x^2}$

Is x = 0 a vertical asymptote for the function $f(x) = \frac{e^{x^2} - 1}{3x^2}$?

- f) $\lim_{x \to \infty} \int_{1}^{x} \frac{1}{1+t^{2}} + \frac{1}{t^{2}} dt$ Does the function $g(x) = \int_{1}^{x} \frac{1}{1+t^{2}} + \frac{1}{t^{2}} dt$ have a horizontal asymptote at ∞ ? If yes, write its equation.
- **Ex 7.** Consider the function f(x) = (1+x)(3-x) whose graph on the interval [-1,3] is sketched below. Let S be the region between the curve y = f(x), the x-axis and the lines x = -1 and x = 3.

- a) Draw in the picture above the rectangles associate to the right Riemann sum with n = 4.
- b) Approximate the area of S with the right Riemann sum with n = 4.
- c) Express the area of S as a definite integral.
- d) Compute the exact value of the area of S.
- e) Was your approximation an underestimate or an overestimate?

Ex 8 Let $f(x) = x^4 - 4x^2$.

- (a) List the following, showing all work:
 - the x and y- intercepts, if any
 - the horizontal and vertical asymptotes, if any
 - the intervals of increase and decrease of f
 - all local maximum and local minimum values of f
 - the intervals over which f is concave up and the intervals over which f is concave down
 - all inflection points

Sketch the graph of f and label all the items that you listed.

- (b) Repeat the exercise for the functions $g(t) = \frac{1}{t} + t + 1$ and $h(x) = x^2 e^x$.
- **Ex 9.** Let $f(x) = \cos\left(\tan^{-1}\left(\frac{1}{e^x}\right)\right)$. Simplify the expression of f and compute f(0).
- Ex 10. At noon ship A is 100 km west of ship B. Ship A is sailing south at 35 km/h and ship B is sailing north at 25 km/h. How fast is the distance between the ships changing at 4:00 pm.
- **Ex 11.** Using the Mean Value Theorem and the Fundamental Theorem of Calculus, prove that if f is continuous on [a, b] then there exists a number c in (a, b) such that

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Give a geometrical interpretation of this result.

<u>Remark</u>: This theorem is called **Mean Value Theorem for Integrals**.

Ex 12. A piece of wire 10 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. How should the wire be cut so that the total area enclosed is as small as possible?