LOGIC IMPLICATION

Recall

A function f is differentiable at a if $f^{\prime}(a)$ exists, i. e. if

$$
\begin{gathered}
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
\text { exists. }
\end{gathered}
$$

If f is differentiable at a then

 f is continuous at $a$$f$ is differentiable at a
\Downarrow
f is continuous at a

$P \Rightarrow Q$

$\mathrm{P}=« f$ is differentiable at $a »$

$$
\mathrm{Q}=« f \text { is continuous at } a »
$$

$P \Rightarrow Q$

$\mathrm{P}=$ Student X is in CMC 130 on MW at 11am

$Q=$ Student X is a calculus student

Is this implication true? YES!

Question:

If $P \Rightarrow Q$ is true, then what can we say about:

$$
\begin{aligned}
\operatorname{not} Q & \Rightarrow \operatorname{not} P \\
Q & \Rightarrow P
\end{aligned}
$$

$\mathrm{P}=$ Student X is in CMC 130 on MW at 11am $\mathrm{Q}=$ Student X is a calculus student

not $\mathrm{P}=$ Student X is not in CMC 130 on MW at 11am
not $\mathrm{Q}=$ Student X is not a calculus student

Is it true that: not $\mathrm{Q} \Rightarrow$ not P ?
Yes!

$\mathrm{P}=$ Student X is in CMC 130 on MW at 11am Q = Student X is a calculus student

Is it true that: $Q \Rightarrow P$? NO!

Counterexample: each student in sections $2,3,4,5,6,7,901$ of calculus is a calculus student who is not in CMC 130 on MW at 11am.

More exageration

insect

TRUE

More exageration

not
 insect
 not

TRUE

More exageration

insect

FALSE!

f is differentiable $\xrightarrow{\mathbf{T}} f$ is continuous at a
f is not continuous at a $\stackrel{T}{\Longrightarrow} \quad f$ is not differentiable at a
f is continuous at a
$\stackrel{\mathrm{F}}{\Longrightarrow} f$ is differentiable at a

Counterexample

$f(x)=|x|$ is continuous at 0 , but not differentiable at 0 .

Recap!

The implication $\mathbf{P} \Rightarrow \mathbf{Q}$ is true when every time the statement P is true, then also the statement Q is true. Hence:

- If you want to show that the implication $P \Rightarrow Q$ is true, you need a proof;
- If you want to show that the implication $P \Rightarrow Q$ is false you need a counterexample: this means that you need an example of something that verifies P but does not verify Q (indeed in this case P will be true, while Q will be false).

$D \rightleftarrows<$

$P=$ The grade of student X is A
$\mathrm{Q}=$ The final grade of student X is more than 90\%

All the definitions are « if and only if »

Ex: A function f is continuous at a if (and only if)
$\lim _{x \rightarrow a} f(x)=f(a)$

