
INTRODUCTION TO CALCULUS

ETIMOLOGY

The word **calculus** comes from Latin and means « a small pebble or stone used for counting »

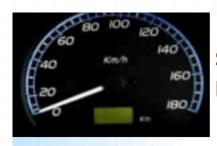
BRIEF HISTORY

Modern calculus was developed in 17th-century by **Newton** and **Leibniz** indipendently of each other (even if there was a great controversy.

Newton: first to apply calculus to general physics.

Leibniz: developed much of the notation used in calculus today

What does calculus study?


Calculus is the study of the **change** and it studies change by studying *istantaneous* change (over a tiny interval of time).

Example: Motion of an object along a fixed path

Motion of an object along a fixed path

- Let us fix a point on the path. At any time we can describe the position (= distance frome the fixed point) of the object: position is a *function* of the time.
- What does it change in this example? The position varies with time.
- And how does the position change with time? This depends on the *velocity* of the object.

Average velocity...

Sam and Alex are traveling in the car ... but the speedometer is broken.

Alex: "Hey Sam! How fast are we going now?"

Sam: "Wait a minute ..."

"Well in the last minute we went 1,2 km, so we are going:"

1,2 km per minute x 60 minutes in an hour = **72 km/h**

Alex: "No, Sam! Not our **average** for the last minute, or even the last second, I want to know our speed RIGHT NOW."

... vs instantaneous velocity

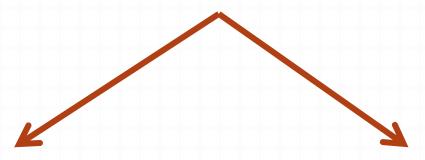
Sam: "OK, let us measure it up here ... at this road sign... NOW!"

"OK, we were AT the sign for **zero seconds**, and the distance was ... **zero** meters!"

The speed is 0m / 0s = 0/0 = I Don't Know!

"I can't calculate it Sam! I need to know **some** distance over **some** time, and you are saying the time should be zero? Can't be done."

Two problems


1) Find the instantaneous velocity by knowing the function position (called more in general the *derivative* of the function)

DIFFERENTIAL CALCULUS

2) Find the position by knowing the istantaneous velocity at all time (or more in general, find the function by knowing its derivative).

CALCULUS

DIFFERENTIAL CALCULUS

INTEGRAL CALCULUS

